Leandro Cruz Rodríguez, Nahuel N. Foressi, M. Soledad Celej
{"title":"Modulation of α-synuclein phase separation by biomolecules","authors":"Leandro Cruz Rodríguez, Nahuel N. Foressi, M. Soledad Celej","doi":"10.1016/j.bbapap.2022.140885","DOIUrl":null,"url":null,"abstract":"<div><p><span>Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, </span>polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963922001327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6
Abstract
Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.