What Makes a “Bad” Ad? User Perceptions of Problematic Online Advertising

Eric Zeng, Paul G. Allen, Tadayoshi Kohno, Franziska Roesner
{"title":"What Makes a “Bad” Ad? User Perceptions of Problematic Online Advertising","authors":"Eric Zeng, Paul G. Allen, Tadayoshi Kohno, Franziska Roesner","doi":"10.1145/3411764.3445459","DOIUrl":null,"url":null,"abstract":"Online display advertising on websites is widely disliked by users, with many turning to ad blockers to avoid “bad” ads. Recent evidence suggests that today’s ads contain potentially problematic content, in addition to well-studied concerns about the privacy and intrusiveness of ads. However, we lack knowledge of which types of ad content users consider problematic and detrimental to their browsing experience. Our work bridges this gap: first, we create a taxonomy of 15 positive and negative user reactions to online advertising from a survey of 60 participants. Second, we characterize classes of online ad content that users dislike or find problematic, using a dataset of 500 ads crawled from popular websites, labeled by 1000 participants using our taxonomy. Among our findings, we report that users consider a substantial amount of ads on the web today to be clickbait, untrustworthy, or distasteful, including ads for software downloads, listicles, and health & supplements.","PeriodicalId":20451,"journal":{"name":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411764.3445459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Online display advertising on websites is widely disliked by users, with many turning to ad blockers to avoid “bad” ads. Recent evidence suggests that today’s ads contain potentially problematic content, in addition to well-studied concerns about the privacy and intrusiveness of ads. However, we lack knowledge of which types of ad content users consider problematic and detrimental to their browsing experience. Our work bridges this gap: first, we create a taxonomy of 15 positive and negative user reactions to online advertising from a survey of 60 participants. Second, we characterize classes of online ad content that users dislike or find problematic, using a dataset of 500 ads crawled from popular websites, labeled by 1000 participants using our taxonomy. Among our findings, we report that users consider a substantial amount of ads on the web today to be clickbait, untrustworthy, or distasteful, including ads for software downloads, listicles, and health & supplements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
什么是“坏”广告?用户对有问题的在线广告的看法
用户普遍不喜欢网站上的在线展示广告,许多人转而使用广告拦截器来避免“坏”广告。最近的证据表明,除了对广告的隐私和侵入性的充分研究之外,今天的广告包含潜在的问题内容。然而,我们不知道用户认为哪些类型的广告内容有问题,对他们的浏览体验有害。我们的工作弥补了这一差距:首先,我们从60名参与者的调查中创建了15个积极和消极的用户对在线广告的反应分类。其次,我们对用户不喜欢或发现有问题的在线广告内容进行分类,使用从流行网站抓取的500个广告数据集,由1000名参与者使用我们的分类法进行标记。在我们的调查结果中,我们报告说,用户认为今天网络上的大量广告是点击党,不值得信任或令人反感的,包括软件下载广告,列表和健康&补充剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tea, Earl Grey, Hot: Designing Speech Interactions from the Imagined Ideal of Star Trek DistanciAR: Authoring Site-Specific Augmented Reality Experiences for Remote Environments StoryCoder: Teaching Computational Thinking Concepts Through Storytelling in a Voice-Guided App for Children Assisting Manipulation and Grasping in Robot Teleoperation with Augmented Reality Visual Cues Exploring Technology Design for Students with Vision Impairment in the Classroom and Remotely
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1