{"title":"Field Nitrogen Dioxide and Ozone Monitoring Using Electrochemical Sensors with Partial Least Squares Regression","authors":"Rachid Laref, E. Losson, A. Sava, M. Siadat","doi":"10.3390/csac2021-10622","DOIUrl":null,"url":null,"abstract":"Low-cost gas sensors detect pollutants gas at the parts-per-billion level and may be installed in small devices to densify air quality monitoring networks for the spread analysis of pollutants around an emissive source. However, these sensors suffer from several issues such as the impact of environmental factors and cross-interfering gases. For instance, the ozone (O3) electrochemical sensor senses nitrogen dioxide (NO2) and O3 simultaneously without discrimination. Alphasense proposes the use of a pair of sensors; the first one, NO2-B43F, is equipped with a filter dedicated to measure NO2. The second one, OX-B431, is sensitive to both NO2 and O3. Thus, O3 concentration can be obtained by subtracting the concentration of NO2 from the sum of the two concentrations. This technique is not practical and requires calibrating each sensor individually, leading to biased concentration estimation. In this paper, we propose Partial Least Square regression (PLS) to build a calibration model including both sensors’ responses and also temperature and humidity variations. The results obtained from data collected in the field for two months show that PLS regression provides better gas concentration estimation in terms of accuracy than calibrating each sensor individually.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Low-cost gas sensors detect pollutants gas at the parts-per-billion level and may be installed in small devices to densify air quality monitoring networks for the spread analysis of pollutants around an emissive source. However, these sensors suffer from several issues such as the impact of environmental factors and cross-interfering gases. For instance, the ozone (O3) electrochemical sensor senses nitrogen dioxide (NO2) and O3 simultaneously without discrimination. Alphasense proposes the use of a pair of sensors; the first one, NO2-B43F, is equipped with a filter dedicated to measure NO2. The second one, OX-B431, is sensitive to both NO2 and O3. Thus, O3 concentration can be obtained by subtracting the concentration of NO2 from the sum of the two concentrations. This technique is not practical and requires calibrating each sensor individually, leading to biased concentration estimation. In this paper, we propose Partial Least Square regression (PLS) to build a calibration model including both sensors’ responses and also temperature and humidity variations. The results obtained from data collected in the field for two months show that PLS regression provides better gas concentration estimation in terms of accuracy than calibrating each sensor individually.