Analysis of the Application of Information Technology in the Management of Rural Population Return Based on the Era of Big Data

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Organizational and End User Computing Pub Date : 2022-05-01 DOI:10.4018/joeuc.286171
Zhengchao Cai
{"title":"Analysis of the Application of Information Technology in the Management of Rural Population Return Based on the Era of Big Data","authors":"Zhengchao Cai","doi":"10.4018/joeuc.286171","DOIUrl":null,"url":null,"abstract":"Based on rural population return management, governance theory, and information technology theory, this paper analyzes the specific performance of rural areas in managing population return, and describes the overview, quantity, life status, and demographic characteristics of rural population return, as well as the current situation of rural population return management. A method of managing rural population return based on a rural population return management model constructed by a machine learning algorithm is designed. The empirical results show that the method designed in this paper is low-cost, fast, and highly accurate, and is well suited for improving and expanding the system for managing rural return flows. The research in this paper provides a reference for further promoting the transformation strategy of rural governance in the context of new urbanization.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"48 1","pages":"1-15"},"PeriodicalIF":3.6000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.286171","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Based on rural population return management, governance theory, and information technology theory, this paper analyzes the specific performance of rural areas in managing population return, and describes the overview, quantity, life status, and demographic characteristics of rural population return, as well as the current situation of rural population return management. A method of managing rural population return based on a rural population return management model constructed by a machine learning algorithm is designed. The empirical results show that the method designed in this paper is low-cost, fast, and highly accurate, and is well suited for improving and expanding the system for managing rural return flows. The research in this paper provides a reference for further promoting the transformation strategy of rural governance in the context of new urbanization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据时代下信息技术在农村人口回流管理中的应用分析
本文以农村人口回流管理、治理理论、信息技术理论为基础,分析了农村在人口回流管理中的具体表现,阐述了农村人口回流的概况、数量、生活状况、人口学特征以及农村人口回流管理的现状。设计了一种基于机器学习算法构建的农村人口回流管理模型的农村人口回流管理方法。实证结果表明,本文设计的方法具有成本低、速度快、准确性高等特点,适合于完善和拓展农村回流管理体系。本文的研究为进一步推进新型城镇化背景下的乡村治理转型战略提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
期刊最新文献
Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting Enhancing Innovation Management and Venture Capital Evaluation via Advanced Deep Learning Techniques Going Global in the Digital Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1