PREDICTION OF TECHNOLOGICAL SYSTEMS USING THE MECHANISM OF ATTENTION IN NEURAL NETWORKS

M. Dli, A. Puchkov, Ekaterina I. Rysina
{"title":"PREDICTION OF TECHNOLOGICAL SYSTEMS USING THE MECHANISM OF ATTENTION IN NEURAL NETWORKS","authors":"M. Dli, A. Puchkov, Ekaterina I. Rysina","doi":"10.36807/1998-9849-2022-61-87-67-72","DOIUrl":null,"url":null,"abstract":"A method is proposed for predicting the variables of a cyber-physical system that implements the technological process of phosphorus production; the variables are presented as a multidimensional time series. The method is based on the use of a deep neural recurrent network with an autoencoder structure, to which an attention mechanism is added. In it the information about the intermediate internal states of the encoder is available to the decoder and is used by it to form an output sequence of predictive values of process variables. The results of a model experiment in the MatLAB environment are presented, which showed a higher prediction accuracy of a neural network with the attention mechanism compared to a neural network without its use","PeriodicalId":9467,"journal":{"name":"Bulletin of the Saint Petersburg State Institute of Technology (Technical University)","volume":"15 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Saint Petersburg State Institute of Technology (Technical University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36807/1998-9849-2022-61-87-67-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method is proposed for predicting the variables of a cyber-physical system that implements the technological process of phosphorus production; the variables are presented as a multidimensional time series. The method is based on the use of a deep neural recurrent network with an autoencoder structure, to which an attention mechanism is added. In it the information about the intermediate internal states of the encoder is available to the decoder and is used by it to form an output sequence of predictive values of process variables. The results of a model experiment in the MatLAB environment are presented, which showed a higher prediction accuracy of a neural network with the attention mechanism compared to a neural network without its use
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络中的注意机制预测技术系统
提出了一种实现磷素生产工艺过程的网络物理系统变量预测方法;变量以多维时间序列的形式呈现。该方法基于使用具有自编码器结构的深度神经递归网络,并在其上添加了注意机制。其中,有关编码器的中间内部状态的信息可供解码器使用,并由解码器用来形成过程变量预测值的输出序列。给出了在MatLAB环境下的模型实验结果,结果表明,与不使用注意机制的神经网络相比,使用注意机制的神经网络具有更高的预测精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PREPARATION TECHNOLOGY OF PLANT-BASED SAUSAGES AND THEIR QUALITY ASSESSMENT MOLECULAR STRUCTURE AND RADIOPROTECTIVE ACTIVITY OF DERIVATIVES OF AMINOETHYLTHIOSULFATES AND AMINOTHIOLS ANALYTICAL QUALITY CONTROL OF ELASTIC EXPLOSIVE MANUFACTURING MECHATRONIC TECHNOLOGICAL COMPLEX AS A DESIGN OBJECT HYDROGEN SULFIDE CORROSION INHIBITORS BASED ON OXYETHYL PIPERAZINE DERIVATIVES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1