On the statistical analysis of the harmonic signal autocorrelation function

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2021-12-01 DOI:10.34768/amcs-2021-0050
S. Sienkowski, M. Krajewski
{"title":"On the statistical analysis of the harmonic signal autocorrelation function","authors":"S. Sienkowski, M. Krajewski","doi":"10.34768/amcs-2021-0050","DOIUrl":null,"url":null,"abstract":"Abstract The article presents new tools for investigating the statistical properties of the harmonic signal autocorrelation function (ACF). These tools enable identification of the ACF estimator errors in measurements in which the triggering of the measurements is non-synchronized. This is important because in many measurement situations the initial phase of the measured signal is random. The developed tools enable testing the ACF estimator of a harmonic signal in the presence of Gaussian noise. These are the formulas on the basis of which the statistical properties of the estimator can be determined, including the bias, the variance and the mean squared error (MSE). For comparison, the article also presents the ACF statistical analysis tools used in the conditions of synchronized measurement triggering, known from the literature. Operation of the new tools is verified by simulation and experimental studies. The conducted research shows that differences between the MSE results obtained with the use of the developed formulas and those attained from simulations and experimental tests are not greater than 1 dB.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"6 1","pages":"729 - 744"},"PeriodicalIF":1.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2021-0050","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The article presents new tools for investigating the statistical properties of the harmonic signal autocorrelation function (ACF). These tools enable identification of the ACF estimator errors in measurements in which the triggering of the measurements is non-synchronized. This is important because in many measurement situations the initial phase of the measured signal is random. The developed tools enable testing the ACF estimator of a harmonic signal in the presence of Gaussian noise. These are the formulas on the basis of which the statistical properties of the estimator can be determined, including the bias, the variance and the mean squared error (MSE). For comparison, the article also presents the ACF statistical analysis tools used in the conditions of synchronized measurement triggering, known from the literature. Operation of the new tools is verified by simulation and experimental studies. The conducted research shows that differences between the MSE results obtained with the use of the developed formulas and those attained from simulations and experimental tests are not greater than 1 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谐波信号自相关函数的统计分析
摘要本文提出了研究谐波信号自相关函数(ACF)统计特性的新工具。这些工具能够在测量触发不同步的情况下识别测量中的ACF估计器错误。这一点很重要,因为在许多测量情况下,被测信号的初始相位是随机的。所开发的工具能够测试高斯噪声存在下谐波信号的ACF估计器。根据这些公式,可以确定估计器的统计特性,包括偏差、方差和均方误差(MSE)。为了比较,本文还介绍了文献中已知的同步测量触发条件下使用的ACF统计分析工具。通过仿真和实验验证了新工具的有效性。研究表明,利用所建立的公式得到的MSE结果与模拟和实验测试结果的差异不大于1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1