Mebratu Adamu Assegie, Ojing Siram, N. Sahoo, P. Kalita
{"title":"Thermo-Physical Characterization of Waste Glass Induced Packed Bed Material as Thermal Energy Storage Device for Compressed Air Energy Storage System","authors":"Mebratu Adamu Assegie, Ojing Siram, N. Sahoo, P. Kalita","doi":"10.1115/1.4063098","DOIUrl":null,"url":null,"abstract":"\n The article presents the preparation and testing of packed bed (PB) material to be used as a thermal energy storage (TES) device. The proposed TES device will be used to store the high thermal energy attained during air compression in a compressed air energy storage (CAES) system. The article examines the utilization of mortar-based admixture by incorporating waste glass powder (WGP), graphite powder (GP), and waste glass sand (WGS). The selection of these constituents as a primary ingredient for the PB material has been made based on their availability, cost, and sustainability. The thermo-physical assessment of samples with different proportions of aggregates outlined two categories of PB- the first category of PB with low volumetric heat capacity (CP) for short/quick TES and the second category of PB with high CP for large/longer TES. The study also showcases the importance of GP in enhancing the CP of mortar-based TES devices as a result of high porosity.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"13 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents the preparation and testing of packed bed (PB) material to be used as a thermal energy storage (TES) device. The proposed TES device will be used to store the high thermal energy attained during air compression in a compressed air energy storage (CAES) system. The article examines the utilization of mortar-based admixture by incorporating waste glass powder (WGP), graphite powder (GP), and waste glass sand (WGS). The selection of these constituents as a primary ingredient for the PB material has been made based on their availability, cost, and sustainability. The thermo-physical assessment of samples with different proportions of aggregates outlined two categories of PB- the first category of PB with low volumetric heat capacity (CP) for short/quick TES and the second category of PB with high CP for large/longer TES. The study also showcases the importance of GP in enhancing the CP of mortar-based TES devices as a result of high porosity.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems