{"title":"Expression of down-regulated ERV LTR elements associates with immune activation in human small-cell lung cancers.","authors":"Marco Russo, Sara Morelli, Giovanni Capranico","doi":"10.1186/s13100-023-00290-w","DOIUrl":null,"url":null,"abstract":"<p><p>Small-cell lung cancer (SCLC) is an aggressive cancer characterized by immunosuppressive features leading to poor responses to current immunotherapies. Activation of transposable elements (TE) can trigger an innate immune response, which can synergize with immunotherapeutic protocols in patients. However, TE activity in relation to immune gene response is not fully known in human SCLC. Here, we compared TE expression in 104 human SCLC and 24 normal tissues and established their involvement in innate immune responses. We observed that different intergenic TEs, mainly endogenous retroviral (ERV) families, are deregulated in SCLC. Similarly to other cancers, we detected a subset of LTRs that correlate with innate immune gene signatures and cytosolic RNA sensors, such as RIG-I. These LTRs are downregulated in SCLC tumors vs. normal tissues, and are mainly located at transcriptional repressed regions, marked with H3K4me2 in different cell lines. Analyses of different genomic datasets show that chromatin repression is likely due to de-methylase LSD1 activity. Moreover, high expression levels of ERV LTRs predict a better survival upon chemotherapy of SCLC patients. The findings reveal a specific pattern of TE-mediated activation of innate immune genes in SCLC, which can be exploited to establish more effective immunotherapeutic combinations.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"14 1","pages":"2"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-023-00290-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer characterized by immunosuppressive features leading to poor responses to current immunotherapies. Activation of transposable elements (TE) can trigger an innate immune response, which can synergize with immunotherapeutic protocols in patients. However, TE activity in relation to immune gene response is not fully known in human SCLC. Here, we compared TE expression in 104 human SCLC and 24 normal tissues and established their involvement in innate immune responses. We observed that different intergenic TEs, mainly endogenous retroviral (ERV) families, are deregulated in SCLC. Similarly to other cancers, we detected a subset of LTRs that correlate with innate immune gene signatures and cytosolic RNA sensors, such as RIG-I. These LTRs are downregulated in SCLC tumors vs. normal tissues, and are mainly located at transcriptional repressed regions, marked with H3K4me2 in different cell lines. Analyses of different genomic datasets show that chromatin repression is likely due to de-methylase LSD1 activity. Moreover, high expression levels of ERV LTRs predict a better survival upon chemotherapy of SCLC patients. The findings reveal a specific pattern of TE-mediated activation of innate immune genes in SCLC, which can be exploited to establish more effective immunotherapeutic combinations.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.