Optimized Reinforcement Learning Approach on Sustainable Rural Tourism Development for Economic Growth

Guofang Chen
{"title":"Optimized Reinforcement Learning Approach on Sustainable Rural Tourism Development for Economic Growth","authors":"Guofang Chen","doi":"10.1155/2023/4991438","DOIUrl":null,"url":null,"abstract":"A country’s economic development relies on different features such as export/import, industrial processes, and tourism. Rural tourism is a discussion-centric research field for analyzing its contribution to a country’s economic growth. This field generates voluptuous data for tourists, expenditure, location, etc. analysis; the information increases over the years and the density of visiting tourists. Therefore, this article introduces an optimized reinforcement data analysis approach (ORDAA) for generating precise guidance information. This information is two-faced, namely, summarized data for tourist guidance and summarized data for the country’s economic development. Data augmentation’s steep rise and downfall are analyzed using reinforcement learning, wherein decision agents are precise for a relevant summary. The relevance is identified using associated development targets over varying years. Besides, the guidance information that identifies low tourist summary or nonachievable development targets is separately identified. The identified targets are analyzed using reinforcement agents for economic growth improvements compared to the previous tourist densities. This improves the focus on rural tourism sights and economic contributions to an optimal level.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"20 1","pages":"4991438:1-4991438:16"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4991438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A country’s economic development relies on different features such as export/import, industrial processes, and tourism. Rural tourism is a discussion-centric research field for analyzing its contribution to a country’s economic growth. This field generates voluptuous data for tourists, expenditure, location, etc. analysis; the information increases over the years and the density of visiting tourists. Therefore, this article introduces an optimized reinforcement data analysis approach (ORDAA) for generating precise guidance information. This information is two-faced, namely, summarized data for tourist guidance and summarized data for the country’s economic development. Data augmentation’s steep rise and downfall are analyzed using reinforcement learning, wherein decision agents are precise for a relevant summary. The relevance is identified using associated development targets over varying years. Besides, the guidance information that identifies low tourist summary or nonachievable development targets is separately identified. The identified targets are analyzed using reinforcement agents for economic growth improvements compared to the previous tourist densities. This improves the focus on rural tourism sights and economic contributions to an optimal level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乡村旅游可持续发展促进经济增长的优化强化学习方法
一个国家的经济发展依赖于不同的特征,如出口/进口、工业流程和旅游业。乡村旅游是一个以讨论为中心的研究领域,分析其对一个国家经济增长的贡献。这一领域产生大量的数据,供游客、消费、地点等分析;随着时间的推移,信息也在增加,游客的密度也在增加。因此,本文介绍了一种优化的增强数据分析方法(ORDAA),用于生成精确制导信息。这些信息是两面性的,即为游客提供的汇总数据和为国家经济发展提供的汇总数据。使用强化学习分析数据增强的急剧上升和下降,其中决策代理对于相关摘要是精确的。使用不同年份的相关发展目标来确定相关性。此外,还对识别低游客总结或无法实现的发展目标的引导信息进行了单独识别。与以前的旅游密度相比,使用增强剂对确定的目标进行经济增长改进分析。这将乡村旅游景点的重点和经济贡献提高到最佳水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1