Drivers of plant individual-based pollinator visitation network topology in an arid ecosystem

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2022-06-01 DOI:10.1016/j.ecocom.2022.101003
Jenna Braun , Christopher J. Lortie
{"title":"Drivers of plant individual-based pollinator visitation network topology in an arid ecosystem","authors":"Jenna Braun ,&nbsp;Christopher J. Lortie","doi":"10.1016/j.ecocom.2022.101003","DOIUrl":null,"url":null,"abstract":"<div><p>Interactions with pollinators underlie the structure and function of plant communities. Network analysis is a valuable tool for studying plant-pollinator interactions, but these networks are most frequently built by aggregating interactions at the species level. Interactions are between individuals and an advantage of individual-based networks is the ability to integrate inter-individual variation in traits and environmental context within complex ecological networks. We studied the influence of inter-individual variation on pollinator sharing among foundation shrubs and cactus in a desert ecosystem using plant individual-based pollinator visitation networks. We hypothesized that the traits that alter attractiveness of plants to pollinators will also influence an individual plant's role within the visitation network. Foundation plants growing with higher densities of nearby blooming shrubs had higher pollinator visitation rates and had greater access to the conspecific mating pool, suggesting widespread and diffuse pollination facilitation within this community. Further, shrub density influenced the role of betweenness centrality and the effective number of partners (e<sup>H</sup>). Floral display size also influenced the effective number of interaction partners but did not directly influence the centrality measures for individual plants or other measures of network structure despite increasing visitation rates. The individual-based visitation networks were significantly modular and module membership was predicted by species identity and pollinator visitation rates. Ecological and individual context mediate the outcome of pollinator-mediated interactions and are fundamental drivers of whole community structure. This study shows that the density of immediate neighbours can influence the overall structure of plant-pollinator interaction networks. Exploring the contribution of intraspecific variation to community interaction networks will improve our understanding of drivers of community-level ecological dynamics.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 101003"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X22000253","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Interactions with pollinators underlie the structure and function of plant communities. Network analysis is a valuable tool for studying plant-pollinator interactions, but these networks are most frequently built by aggregating interactions at the species level. Interactions are between individuals and an advantage of individual-based networks is the ability to integrate inter-individual variation in traits and environmental context within complex ecological networks. We studied the influence of inter-individual variation on pollinator sharing among foundation shrubs and cactus in a desert ecosystem using plant individual-based pollinator visitation networks. We hypothesized that the traits that alter attractiveness of plants to pollinators will also influence an individual plant's role within the visitation network. Foundation plants growing with higher densities of nearby blooming shrubs had higher pollinator visitation rates and had greater access to the conspecific mating pool, suggesting widespread and diffuse pollination facilitation within this community. Further, shrub density influenced the role of betweenness centrality and the effective number of partners (eH). Floral display size also influenced the effective number of interaction partners but did not directly influence the centrality measures for individual plants or other measures of network structure despite increasing visitation rates. The individual-based visitation networks were significantly modular and module membership was predicted by species identity and pollinator visitation rates. Ecological and individual context mediate the outcome of pollinator-mediated interactions and are fundamental drivers of whole community structure. This study shows that the density of immediate neighbours can influence the overall structure of plant-pollinator interaction networks. Exploring the contribution of intraspecific variation to community interaction networks will improve our understanding of drivers of community-level ecological dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干旱生态系统中植物个体传粉者访视网络拓扑驱动因素
与传粉者的相互作用是植物群落结构和功能的基础。网络分析是研究植物与传粉者相互作用的重要工具,但这些网络通常是通过在物种水平上聚集相互作用而建立的。相互作用发生在个体之间,基于个体的网络的一个优势是能够在复杂的生态网络中整合个体间性状和环境背景的变化。利用基于植物个体的传粉媒介访问网络,研究了荒漠生态系统中基础灌木和仙人掌传粉媒介的个体间变异对传粉媒介共享的影响。我们假设,改变植物对传粉者吸引力的性状也会影响单个植物在访问网络中的作用。在开花灌木密度较高的基础植物中,传粉者的访花率较高,对同种交配池的利用也更大,表明该群落内传粉便利化的广泛性和扩散性。此外,灌木密度还影响了中间性中心性和有效伙伴数的作用。花的展示大小也会影响相互作用伙伴的有效数量,但不直接影响单个植物的中心性测量或其他网络结构测量,尽管访问率增加。以个体为基础的访花网络具有显著的模块化特征,通过物种身份和传粉者访花率预测了访花网络的隶属度。生态和个体环境调节传粉媒介相互作用的结果,是整个群落结构的基本驱动因素。该研究表明,近邻的密度可以影响植物-传粉者相互作用网络的整体结构。探索种内变异对群落相互作用网络的贡献将提高我们对群落水平生态动力学驱动因素的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1