A. F. Setiawan, A. K. Santoso, M. F. Darmawan, A. D. Adi, S. Ismanti
{"title":"Nonlinear Analysis for Investigating Seismic Performance of a Spun Pile-Column of Viaduct Structure","authors":"A. F. Setiawan, A. K. Santoso, M. F. Darmawan, A. D. Adi, S. Ismanti","doi":"10.28991/cej-2023-09-07-02","DOIUrl":null,"url":null,"abstract":"Slab-on-pile SOP viaducts have been constructed on several highways and railways in Indonesia, but there are certain doubts about some practical structural seismic design concepts. Therefore, this study aims to investigate the seismic performance of a single spun pile column for the SOP viaduct using nonlinear analysis. The essential variables used include the effect of top pile reinforced concrete infill treatment, soil-pile structure interaction (SPSI), and different response modification factors (R). Moreover, the single spun pile column was designed as a macro model with a force-based beam-column element having a fiber section in the plastic hinge. The static pushover analysis and quasi-static cyclic were also conducted to determine the displacement limit state and the equal viscous damping, respectively. Furthermore, seven pairs of ground motion excitations were used to investigate seismic performance in line with ASCE 7-10 and ASCE 61-14. The results showed that the implementation of the top-pile reinforced concrete infill treatment slightly reduced seismic response but evoked more severe pile curvature in the embedded zone. In addition, the behavior and seismic performance were slightly better than those without treatment when considering the SPSI. This study recommends the spun pile column for the SOP viaduct with a response modification factor of 1.5 to avoid probable brittle failure occurrence under earthquake load. Doi: 10.28991/CEJ-2023-09-07-02 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-07-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Slab-on-pile SOP viaducts have been constructed on several highways and railways in Indonesia, but there are certain doubts about some practical structural seismic design concepts. Therefore, this study aims to investigate the seismic performance of a single spun pile column for the SOP viaduct using nonlinear analysis. The essential variables used include the effect of top pile reinforced concrete infill treatment, soil-pile structure interaction (SPSI), and different response modification factors (R). Moreover, the single spun pile column was designed as a macro model with a force-based beam-column element having a fiber section in the plastic hinge. The static pushover analysis and quasi-static cyclic were also conducted to determine the displacement limit state and the equal viscous damping, respectively. Furthermore, seven pairs of ground motion excitations were used to investigate seismic performance in line with ASCE 7-10 and ASCE 61-14. The results showed that the implementation of the top-pile reinforced concrete infill treatment slightly reduced seismic response but evoked more severe pile curvature in the embedded zone. In addition, the behavior and seismic performance were slightly better than those without treatment when considering the SPSI. This study recommends the spun pile column for the SOP viaduct with a response modification factor of 1.5 to avoid probable brittle failure occurrence under earthquake load. Doi: 10.28991/CEJ-2023-09-07-02 Full Text: PDF
期刊介绍:
The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.