Paras Mehta, Dimitrios Skoutas, Dimitris Sacharidis, A. Voisard
{"title":"Coverage and diversity aware top-k query for spatio-temporal posts","authors":"Paras Mehta, Dimitrios Skoutas, Dimitris Sacharidis, A. Voisard","doi":"10.1145/2996913.2996941","DOIUrl":null,"url":null,"abstract":"Large amounts of user-generated content are posted daily on the Web, including textual, spatial and temporal information. Exploiting this content to detect, analyze and monitor events and topics that have a potentially large span in space and time requires efficient retrieval and ranking based on criteria including all three dimensions. In this paper, we introduce a novel type of spatial-temporal-keyword query that combines keyword search with the task of maximizing the spatio-temporal coverage and diversity of the returned top-f results. We first describe a baseline algorithm based on related search results diversification problems. Then, we develop an efficient approach which exploits a hybrid spatial-temporal-keyword index to drastically reduce query execution time. To that end, we extend two state-of-the- art indices for top-f spatio-textual queries and describe how our proposed approach can be applied on top of them. We evaluate the efficiency of our algorithms by conducting experiments on two large, real-world datasets containing geotagged tweets and photos.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Large amounts of user-generated content are posted daily on the Web, including textual, spatial and temporal information. Exploiting this content to detect, analyze and monitor events and topics that have a potentially large span in space and time requires efficient retrieval and ranking based on criteria including all three dimensions. In this paper, we introduce a novel type of spatial-temporal-keyword query that combines keyword search with the task of maximizing the spatio-temporal coverage and diversity of the returned top-f results. We first describe a baseline algorithm based on related search results diversification problems. Then, we develop an efficient approach which exploits a hybrid spatial-temporal-keyword index to drastically reduce query execution time. To that end, we extend two state-of-the- art indices for top-f spatio-textual queries and describe how our proposed approach can be applied on top of them. We evaluate the efficiency of our algorithms by conducting experiments on two large, real-world datasets containing geotagged tweets and photos.