{"title":"A physical model for dynamic assembly of human salivary stem/progenitor microstructures","authors":"Yuyang Chen , Danielle Wu , Herbert Levine","doi":"10.1016/j.cdev.2022.203803","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>in vitro</em> reconstructions of human salivary glands in service of their eventual medical use represent a challenge for tissue engineering. Here, we present a theoretical approach to the dynamical formation of acinar structures from human salivary cells, focusing on observed stick-slip radial expansion as well as possible growth instabilities. Our findings demonstrate the critical importance of basement membrane remodeling in controlling the growth process.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"171 ","pages":"Article 203803"},"PeriodicalIF":3.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290122000390/pdfft?md5=355694aff7bbe564b1853eb95bc4fa98&pid=1-s2.0-S2667290122000390-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290122000390","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
The in vitro reconstructions of human salivary glands in service of their eventual medical use represent a challenge for tissue engineering. Here, we present a theoretical approach to the dynamical formation of acinar structures from human salivary cells, focusing on observed stick-slip radial expansion as well as possible growth instabilities. Our findings demonstrate the critical importance of basement membrane remodeling in controlling the growth process.