Deep Learning for the Prediction of Multi poles

J. Baxter, J. Désautels, L. Ramunno
{"title":"Deep Learning for the Prediction of Multi poles","authors":"J. Baxter, J. Désautels, L. Ramunno","doi":"10.1109/PN52152.2021.9597995","DOIUrl":null,"url":null,"abstract":"Deep learning is used for predicting scattered fields from arbitrarily-shaped individual plasmonic nanoparticles using the multipole expansion.","PeriodicalId":6789,"journal":{"name":"2021 Photonics North (PN)","volume":"40 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN52152.2021.9597995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning is used for predicting scattered fields from arbitrarily-shaped individual plasmonic nanoparticles using the multipole expansion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多极预测的深度学习
深度学习被用于利用多极膨胀预测任意形状的等离子体纳米粒子的散射场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a linear K-Space Spectrometer with GRISM for Line Scanning Optical Coherence Tomography Visualization of Potato Starch Chirality with Polarization Second Harmonic Generation Microscopy Transient Stimulated Raman Chirped-Pulse Amplification (TSRCPA) as an Alternative or Complementary to OPCPA Valley-selective directional emission enabled by a plasmonic nanoantenna Molecular Beam Epitaxy Growth and Characterization of AlGaN Epilayer in the Nitrogen-rich Condition on Si Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1