LPI Performance Optimization Scheme for a Joint Radar-Communications System

C. Shi, Yijie Wang, Fei Wang, Jianjiang Zhou
{"title":"LPI Performance Optimization Scheme for a Joint Radar-Communications System","authors":"C. Shi, Yijie Wang, Fei Wang, Jianjiang Zhou","doi":"10.1109/SAM48682.2020.9104362","DOIUrl":null,"url":null,"abstract":"In this paper, a low probability of intercept (LPI) performance optimization scheme for a joint radar-communications system (JRCS) is proposed, which is able to simultaneously estimate channel parameters from the target returns and decode the received communications signals. The primary objective is to improve the LPI performance of a JRCS by optimizing radar waveform design and communications power allocation while guaranteeing a predefined mutual information (MI) threshold for channel parameter estimation and a desired communications data rate (CDR) for data transmission, where both traditional isolated sub-band (TISB) and radar isolated sub-band (RISB) situations are discussed. Subsequently, the approach of Lagrange multipliers and the Karush-Kuhn-Tuckers (KKT) optimality conditions are derived to solve the resulting problems. Also, the successive interference cancellation (SIC) technique is employed to obtain the original communications signals free of any radar interference. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed scheme.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"66 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a low probability of intercept (LPI) performance optimization scheme for a joint radar-communications system (JRCS) is proposed, which is able to simultaneously estimate channel parameters from the target returns and decode the received communications signals. The primary objective is to improve the LPI performance of a JRCS by optimizing radar waveform design and communications power allocation while guaranteeing a predefined mutual information (MI) threshold for channel parameter estimation and a desired communications data rate (CDR) for data transmission, where both traditional isolated sub-band (TISB) and radar isolated sub-band (RISB) situations are discussed. Subsequently, the approach of Lagrange multipliers and the Karush-Kuhn-Tuckers (KKT) optimality conditions are derived to solve the resulting problems. Also, the successive interference cancellation (SIC) technique is employed to obtain the original communications signals free of any radar interference. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种联合雷达通信系统LPI性能优化方案
提出了一种低截获概率(LPI)的联合雷达通信系统(JRCS)性能优化方案,该方案能够同时从目标回波中估计信道参数并对接收到的通信信号进行解码。主要目标是通过优化雷达波形设计和通信功率分配来提高JRCS的LPI性能,同时保证信道参数估计的预定义互信息(MI)阈值和数据传输所需的通信数据速率(CDR),其中讨论了传统隔离子带(TISB)和雷达隔离子带(RISB)情况。随后,推导了拉格朗日乘子法和Karush-Kuhn-Tuckers (KKT)最优性条件来解决所产生的问题。同时,采用逐次干扰抵消(SIC)技术,获得不受雷达干扰的原始通信信号。最后,通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1