{"title":"Optimization of response to selection using genomic selection in indigenous chicken breeding programmes","authors":"C. W. Ndung’u, T. Muasya, T. Okeno","doi":"10.4314/sajas.v51i6.5","DOIUrl":null,"url":null,"abstract":"This study tested the hypothesis that the use of pooled genetic and phenotypic parameters and genomic selection would optimize selection response in indigenous chicken breeding programmes. This premise was tested with deterministic simulation in three breeding schemes based on the sources of information used to estimate breeding values. These schemes used a conventional breeding scheme with non-pooled parameters (CSN), pooled parameters (CSP), and genomic information in a genomic selection scheme (GSS). A one-tier closed nucleus breeding programme was considered with a mating ratio of 1 to 5 for males to females, Four traits were used in the breeding goal, namely live weight at twelve weeks (LW), egg number for twelve weeks (EN), age at first egg (AFE), and antibody response (Ab). The genetic gain for CSN was 1.5 times higher than that of CSP. The rate of inbreeding for CSN was 19% lower than in CSP. The accuracy of selection followed the same trend with CSN producing 9% higher accuracy of selection than CSP. The GSS scheme resulted in an additional 59.3% genetic gain and 30% accuracy compared with CSP. The GSS scheme also had a reduced rate of inbreeding by 46% compared with CSP. When compared with CSN, GSS produced 38.7% greater genetic gain, a 27% lower rate of inbreeding and 21.0% higher accuracy of selection. Use of pooled parameter estimates and genomic information optimized response to selection, whereas non-pooled inputs overestimated and underestimated rates of genetic gain and inbreeding.","PeriodicalId":21869,"journal":{"name":"South African Journal of Animal Science","volume":"75 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4314/sajas.v51i6.5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study tested the hypothesis that the use of pooled genetic and phenotypic parameters and genomic selection would optimize selection response in indigenous chicken breeding programmes. This premise was tested with deterministic simulation in three breeding schemes based on the sources of information used to estimate breeding values. These schemes used a conventional breeding scheme with non-pooled parameters (CSN), pooled parameters (CSP), and genomic information in a genomic selection scheme (GSS). A one-tier closed nucleus breeding programme was considered with a mating ratio of 1 to 5 for males to females, Four traits were used in the breeding goal, namely live weight at twelve weeks (LW), egg number for twelve weeks (EN), age at first egg (AFE), and antibody response (Ab). The genetic gain for CSN was 1.5 times higher than that of CSP. The rate of inbreeding for CSN was 19% lower than in CSP. The accuracy of selection followed the same trend with CSN producing 9% higher accuracy of selection than CSP. The GSS scheme resulted in an additional 59.3% genetic gain and 30% accuracy compared with CSP. The GSS scheme also had a reduced rate of inbreeding by 46% compared with CSP. When compared with CSN, GSS produced 38.7% greater genetic gain, a 27% lower rate of inbreeding and 21.0% higher accuracy of selection. Use of pooled parameter estimates and genomic information optimized response to selection, whereas non-pooled inputs overestimated and underestimated rates of genetic gain and inbreeding.
期刊介绍:
The South African Journal of Animal Science is an open access, peer-reviewed journal for
publication of original scientific articles and reviews in the field of animal science. The journal
publishes reports of research dealing with production of farmed animal species (cattle, sheep,
goats, pigs, horses, poultry and ostriches), as well as pertinent aspects of research on aquatic
and wildlife species. Disciplines covered nutrition, genetics, physiology, and production
systems. Systematic research on animal products, behaviour, and welfare are also invited.
Rigorous testing of well-specified hypotheses is expected.