V. Bratman, Y. Kalynov, V. A. Koldanov, A. Litvak, S. Razin, A. Sidorov, V. Skalyga, V. Zorin
{"title":"Plasma creation by a powerful electromagnetic radiation of terahertz gyrotrons","authors":"V. Bratman, Y. Kalynov, V. A. Koldanov, A. Litvak, S. Razin, A. Sidorov, V. Skalyga, V. Zorin","doi":"10.1109/PLASMA.2011.5992895","DOIUrl":null,"url":null,"abstract":"Summary from only given. The study of the discharge in a focused beam of terahertz radiation in argon at pressures close to atmospheric was made. The range of breakdown electric fields and gas pressures at which the discharge occurs was determined. Discharge, had started at the focus of the beam, propagated in the region of weak fields, where the value of the intensity was substantially less than the breakdown one. The investigation of the discharge glow dynamics was made and it was shown that its front had moved towards the radiation with the speed of about 105 cm/sec. The estimation of the plasma density was made on the basis of the terahertz wave transmission coefficient measurements, and the value of the density exceeded the value of 1015 cm-3. The features of the discharge excited by radiation of the terahertz frequency range and its possible applications are discussed.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":"216 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2011.5992895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary from only given. The study of the discharge in a focused beam of terahertz radiation in argon at pressures close to atmospheric was made. The range of breakdown electric fields and gas pressures at which the discharge occurs was determined. Discharge, had started at the focus of the beam, propagated in the region of weak fields, where the value of the intensity was substantially less than the breakdown one. The investigation of the discharge glow dynamics was made and it was shown that its front had moved towards the radiation with the speed of about 105 cm/sec. The estimation of the plasma density was made on the basis of the terahertz wave transmission coefficient measurements, and the value of the density exceeded the value of 1015 cm-3. The features of the discharge excited by radiation of the terahertz frequency range and its possible applications are discussed.