The molecular basis for cellular function of intrinsically disordered protein regions

IF 81.3 1区 生物学 Q1 CELL BIOLOGY Nature Reviews Molecular Cell Biology Pub Date : 2023-11-13 DOI:10.1038/s41580-023-00673-0
Alex S. Holehouse, Birthe B. Kragelund
{"title":"The molecular basis for cellular function of intrinsically disordered protein regions","authors":"Alex S. Holehouse, Birthe B. Kragelund","doi":"10.1038/s41580-023-00673-0","DOIUrl":null,"url":null,"abstract":"Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function. Intrinsically disordered regions of proteins lack a defined 3D structure and exist in a collection of interconverting conformations. Recent work is shedding light on how — through their conformational malleability and adaptability — intrinsically disordered regions extend the repertoire of macromolecular interactions in the cell and contribute to key cellular functions.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":81.3000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41580-023-00673-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function. Intrinsically disordered regions of proteins lack a defined 3D structure and exist in a collection of interconverting conformations. Recent work is shedding light on how — through their conformational malleability and adaptability — intrinsically disordered regions extend the repertoire of macromolecular interactions in the cell and contribute to key cellular functions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内在无序的蛋白质区域的细胞功能的分子基础
内在无序的蛋白质区域存在于缺乏稳定三维结构的动态相互转换构象的集合中。这些区域在结构上是异质的,无处不在,并且在所有的生命王国中都能找到。尽管缺乏明确的3D结构,但无序区域对于从转录控制和细胞信号传导到亚细胞组织的细胞过程是必不可少的。通过它们的构象可塑性和适应性,无序区域扩展了大分子相互作用的范围,并且很容易通过它们的结构和化学环境进行调节,使它们成为对调控信号的理想反应。最近的工作在理解蛋白质序列和无序区构象行为之间的联系方面取得了重大进展,但序列和分子功能之间的联系还不太明确。在这里,我们考虑了生物化学和生物物理基础,这些基础解释了无序区域如何以及为什么可以参与生产性细胞功能,提供了新兴概念的例子,并讨论了蛋白质紊乱如何促进细胞内信息处理和细胞功能调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Reviews Molecular Cell Biology
Nature Reviews Molecular Cell Biology 生物-细胞生物学
CiteScore
173.60
自引率
0.50%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.
期刊最新文献
The role of the haematopoietic stem cell niche in development and ageing Mechanisms of mechanotransduction and physiological roles of PIEZO channels Dynamics of DNA replication speeds in single cells CLASPing and squeezing during cell migration Mechanisms of assembly and remodelling of the extracellular matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1