Julie K Furberg, Per K Andersen, Sofie Korn, Morten Overgaard, Henrik Ravn
{"title":"Bivariate pseudo-observations for recurrent event analysis with terminal events.","authors":"Julie K Furberg, Per K Andersen, Sofie Korn, Morten Overgaard, Henrik Ravn","doi":"10.1007/s10985-021-09533-5","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of recurrent events in the presence of terminal events requires special attention. Several approaches have been suggested for such analyses either using intensity models or marginal models. When analysing treatment effects on recurrent events in controlled trials, special attention should be paid to competing deaths and their impact on interpretation. This paper proposes a method that formulates a marginal model for recurrent events and terminal events simultaneously. Estimation is based on pseudo-observations for both the expected number of events and survival probabilities. Various relevant hypothesis tests in the framework are explored. Theoretical derivations and simulation studies are conducted to investigate the behaviour of the method. The method is applied to two real data examples. The bivariate marginal pseudo-observation model carries the strength of a two-dimensional modelling procedure and performs well in comparison with available models. Finally, an extension to a three-dimensional model, which decomposes the terminal event per death cause, is proposed and exemplified.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-021-09533-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The analysis of recurrent events in the presence of terminal events requires special attention. Several approaches have been suggested for such analyses either using intensity models or marginal models. When analysing treatment effects on recurrent events in controlled trials, special attention should be paid to competing deaths and their impact on interpretation. This paper proposes a method that formulates a marginal model for recurrent events and terminal events simultaneously. Estimation is based on pseudo-observations for both the expected number of events and survival probabilities. Various relevant hypothesis tests in the framework are explored. Theoretical derivations and simulation studies are conducted to investigate the behaviour of the method. The method is applied to two real data examples. The bivariate marginal pseudo-observation model carries the strength of a two-dimensional modelling procedure and performs well in comparison with available models. Finally, an extension to a three-dimensional model, which decomposes the terminal event per death cause, is proposed and exemplified.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.