Significant association between a non-synonymous snp in IGFBP5 gene and the growth of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878)

T. T. Tran, H. S. Tran, B. T. Le, S. Nguyen, H. Vu, O. Kim
{"title":"Significant association between a non-synonymous snp in IGFBP5 gene and the growth of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878)","authors":"T. T. Tran, H. S. Tran, B. T. Le, S. Nguyen, H. Vu, O. Kim","doi":"10.15625/1811-4989/17647","DOIUrl":null,"url":null,"abstract":"Insulin-like growth factor binding protein 5 (IGFBP5) is the highest conserved member of IGFBP family, and has the broad range of biological activities effecting on the cell growth. This study aims to investigate the association between genetic variation in IGFBP5 gene and the growth of striped catfish (Pangasianodon hypophthalmus). Single nucleotide polymorphisms (SNPs) were discovered and validated in IGFBP5 gene from two growth-selected populations (fast- and slow- growing fish). For SNP discovery, the fragments of IGFBP5 from sample sets of 10 fast- growing fish and 10 slow- growing fish were directly sequenced by Sanger sequencing. In this stage, 4 exonic SNPs were discovered, including a non-synonymous SNP 525 T>A (p. Val16Glu) in exon 1, and three synonymous SNPs (8859 G>A, 11713 C>A, 11992 T>C) in exon 4. The non-synonymous SNP 525 T>A (p.Val16Glu) was filtered to the next step of SNP validation. For validation, the SNP was individually genotyped in the test populations of 70 fast- growing fish and 70 slow- growing fish by single base extension method. Data analysis from the total SNPs which were collected from 80 fast- growing fish and 80 slow- growing fish indicated that non-synonymous SNP 525 T>A (p.Val16Glu) was significantly associated to the growth of striped catfish (p-value <0.001). Analysis of genetic diversity parameters (PIC, MAF) suggested that this SNP is a common variant, contributes significantly to the genetic variance. The non-synonymous SNP 525 T>A (p.Val16Glu) in IGFBP5 gene would become a SNP marker candidate for marker assisted selection (MAS) that can be used in pangasius breeding.","PeriodicalId":23622,"journal":{"name":"Vietnam Journal of Biotechnology","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1811-4989/17647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin-like growth factor binding protein 5 (IGFBP5) is the highest conserved member of IGFBP family, and has the broad range of biological activities effecting on the cell growth. This study aims to investigate the association between genetic variation in IGFBP5 gene and the growth of striped catfish (Pangasianodon hypophthalmus). Single nucleotide polymorphisms (SNPs) were discovered and validated in IGFBP5 gene from two growth-selected populations (fast- and slow- growing fish). For SNP discovery, the fragments of IGFBP5 from sample sets of 10 fast- growing fish and 10 slow- growing fish were directly sequenced by Sanger sequencing. In this stage, 4 exonic SNPs were discovered, including a non-synonymous SNP 525 T>A (p. Val16Glu) in exon 1, and three synonymous SNPs (8859 G>A, 11713 C>A, 11992 T>C) in exon 4. The non-synonymous SNP 525 T>A (p.Val16Glu) was filtered to the next step of SNP validation. For validation, the SNP was individually genotyped in the test populations of 70 fast- growing fish and 70 slow- growing fish by single base extension method. Data analysis from the total SNPs which were collected from 80 fast- growing fish and 80 slow- growing fish indicated that non-synonymous SNP 525 T>A (p.Val16Glu) was significantly associated to the growth of striped catfish (p-value <0.001). Analysis of genetic diversity parameters (PIC, MAF) suggested that this SNP is a common variant, contributes significantly to the genetic variance. The non-synonymous SNP 525 T>A (p.Val16Glu) in IGFBP5 gene would become a SNP marker candidate for marker assisted selection (MAS) that can be used in pangasius breeding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IGFBP5基因非同义snp与条纹鲶鱼生长的显著相关性(Pangasianodon hypophthalmus, Sauvage, 1878)
胰岛素样生长因子结合蛋白5 (IGFBP5)是IGFBP家族中最保守的成员,具有广泛的影响细胞生长的生物活性。本研究旨在探讨IGFBP5基因的遗传变异与斑纹鲶鱼(Pangasianodon hypophthalmus)生长的关系。在两个生长选择种群(快生长和慢生长)中发现并验证了IGFBP5基因的单核苷酸多态性(snp)。为了发现SNP,我们直接对10条快生长鱼和10条慢生长鱼的IGFBP5片段进行了Sanger测序。在这个阶段,发现了4个外显子SNP,包括1号外显子的非同义SNP 525 T> a (p. Val16Glu)和4号外显子的3个同义SNP (8859 G> a, 11713 C> a, 11992 T>C)。非同义SNP 525 T>A (p.Val16Glu)被过滤到SNP验证的下一步。为了验证该SNP,我们用单碱基延伸法对70条快生长鱼和70条慢生长鱼的测试群体进行了基因分型。对80条快生长鱼和80条慢生长鱼的总SNP数据分析表明,非同义SNP 525 T>A (p.Val16Glu)与条纹鲶鱼的生长显著相关,IGFBP5基因的p值A (p.Val16Glu)将成为标记辅助选择(MAS)的SNP候选标记,可用于巴鲶鱼育种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of commercial probiotics and antibiotics on the growth of Campylobacter isolated from chicken meat in Ho Chi Minh city markets Study on the transient expression of infectious bronchitis virus spike protein in Nicotiana benthamiana leaves Association study of NAT2 rs1799931 polymorphism with male infertility Development of CRISPR/Cas9 systems to induce targeted mutations in the promoter region of the OsSRFP1 gene in rice Wild-type Caenorhabditis sinica, a model nematode for speciation and evolution, massively found in Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1