Quantum Convolutional Neural Network for Resource-Efficient Image Classification: A Quantum Random Access Memory (QRAM) Approach

Seunghyeok Oh, Jaeho Choi, Jong-Kook Kim, Joongheon Kim
{"title":"Quantum Convolutional Neural Network for Resource-Efficient Image Classification: A Quantum Random Access Memory (QRAM) Approach","authors":"Seunghyeok Oh, Jaeho Choi, Jong-Kook Kim, Joongheon Kim","doi":"10.1109/ICOIN50884.2021.9333906","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) is a breakthrough learning model that shows outstanding performance in computer vision and deep learning applications. However, it is a relatively burdened model in terms of learning speed and resource usage compared to other learning models when the learning scale becomes large. Quantum Convolutional Neural Network (QCNN) is a novel model as a potential solution using quantum computers to handle this problem. Quantum computers with a limited number of usable qubits needs a resource-efficient method to process large-scale data at once. In addition, Quantum Random Access Memory (QRAM) can store the large data to qubits logarithmically using superposition and entanglement. The QRAM algorithm can design a new QCNN model that can efficiently process in massive data. This paper proposes a more resource and depth efficient model for larger-sized input data and the number of output channels using the QRAM algorithm and efficiently extracting features.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"147 1","pages":"50-52"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Convolutional Neural Network (CNN) is a breakthrough learning model that shows outstanding performance in computer vision and deep learning applications. However, it is a relatively burdened model in terms of learning speed and resource usage compared to other learning models when the learning scale becomes large. Quantum Convolutional Neural Network (QCNN) is a novel model as a potential solution using quantum computers to handle this problem. Quantum computers with a limited number of usable qubits needs a resource-efficient method to process large-scale data at once. In addition, Quantum Random Access Memory (QRAM) can store the large data to qubits logarithmically using superposition and entanglement. The QRAM algorithm can design a new QCNN model that can efficiently process in massive data. This paper proposes a more resource and depth efficient model for larger-sized input data and the number of output channels using the QRAM algorithm and efficiently extracting features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向资源高效图像分类的量子卷积神经网络:量子随机存取存储器(QRAM)方法
卷积神经网络(CNN)是一种突破性的学习模型,在计算机视觉和深度学习应用中表现出色。但是,当学习规模变大时,与其他学习模型相比,它在学习速度和资源使用方面是一个相对负担较大的模型。量子卷积神经网络(QCNN)是利用量子计算机解决这一问题的一种新模型。可用量子比特数量有限的量子计算机需要一种资源高效的方法来一次处理大规模数据。此外,量子随机存取存储器(QRAM)可以利用叠加和纠缠将大数据以对数方式存储到量子位。QRAM算法可以设计一种新的QCNN模型,可以有效地处理海量数据。本文利用QRAM算法和高效的特征提取方法,针对输入数据量大、输出通道数多的情况,提出了一种资源效率更高、深度效率更高的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1