When deep learning meets edge computing

Yutao Huang, Xiaoqiang Ma, Xiaoyi Fan, Jiangchuan Liu, Wei Gong
{"title":"When deep learning meets edge computing","authors":"Yutao Huang, Xiaoqiang Ma, Xiaoyi Fan, Jiangchuan Liu, Wei Gong","doi":"10.1109/ICNP.2017.8117585","DOIUrl":null,"url":null,"abstract":"The state-of-the-art cloud computing platforms are facing challenges, such as the high volume of crowdsourced data traffic and highly computational demands, involved in typical deep learning applications. More recently, Edge Computing has been recently proposed as an effective way to reduce the resource consumption. In this paper, we propose an edge learning framework by introducing the concept of edge computing and demonstrate the superiority of our framework on reducing the network traffic and running time.","PeriodicalId":6462,"journal":{"name":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","volume":"1007 ","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2017.8117585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

The state-of-the-art cloud computing platforms are facing challenges, such as the high volume of crowdsourced data traffic and highly computational demands, involved in typical deep learning applications. More recently, Edge Computing has been recently proposed as an effective way to reduce the resource consumption. In this paper, we propose an edge learning framework by introducing the concept of edge computing and demonstrate the superiority of our framework on reducing the network traffic and running time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当深度学习遇上边缘计算
最先进的云计算平台正面临着挑战,例如典型深度学习应用中涉及的大量众包数据流量和高计算需求。最近,边缘计算作为一种减少资源消耗的有效方法被提出。在本文中,我们通过引入边缘计算的概念提出了一个边缘学习框架,并展示了我们的框架在减少网络流量和运行时间方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-tier Collaborative Deep Reinforcement Learning for Non-terrestrial Network Empowered Vehicular Connections Message from the General Co-Chairs Algorithm-data driven optimization of adaptive communication networks Planning in compute-aggregate problems as optimization problems on graphs General ternary bit strings on commodity longest-prefix-match infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1