CEW-DTW: A new time series model for text mining

Guandong Zhang, Hao Yu, Lu Xiao
{"title":"CEW-DTW: A new time series model for text mining","authors":"Guandong Zhang, Hao Yu, Lu Xiao","doi":"10.1109/ICOIACT.2018.8350694","DOIUrl":null,"url":null,"abstract":"The keyword information is usually applied to describe answers. In most of the previous studies, researchers usually rank answers according to keyword retrieval, which fails to consider the importance of the time sequence of keywords in answers. In this paper, we propose CEW-DTW, a new time series model for answer ranking. This model considers the importance of the time sequence of keywords as well as the amount of keywords. CEW-DTW is developed from a carefully designed model, Dynamic Time Warping-Delta (DTW-D). We choose Amazon question/answer data as our evaluation dataset. We apply Entropy to remove noise in answer vectors. In experiments, we apply normalized discounted cumulative gain (nDCG) as the assess rule to test models. CEW-DTW is proven to have a better performance than Dynamic Time Warping (DTW) and Dynamic Time Warping-Delta (DTW-D) in answer ranking. An extensive set of evaluation results demonstrates the effectiveness of the CEW-DTW model for answer ranking.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"30 8","pages":"158-162"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The keyword information is usually applied to describe answers. In most of the previous studies, researchers usually rank answers according to keyword retrieval, which fails to consider the importance of the time sequence of keywords in answers. In this paper, we propose CEW-DTW, a new time series model for answer ranking. This model considers the importance of the time sequence of keywords as well as the amount of keywords. CEW-DTW is developed from a carefully designed model, Dynamic Time Warping-Delta (DTW-D). We choose Amazon question/answer data as our evaluation dataset. We apply Entropy to remove noise in answer vectors. In experiments, we apply normalized discounted cumulative gain (nDCG) as the assess rule to test models. CEW-DTW is proven to have a better performance than Dynamic Time Warping (DTW) and Dynamic Time Warping-Delta (DTW-D) in answer ranking. An extensive set of evaluation results demonstrates the effectiveness of the CEW-DTW model for answer ranking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CEW-DTW:一种新的文本挖掘时间序列模型
关键字信息通常用于描述答案。在以往的大多数研究中,研究人员通常是根据关键词检索对答案进行排序,而没有考虑关键词在答案中出现的时间顺序的重要性。本文提出了一种新的答案排序时间序列模型CEW-DTW。该模型考虑了关键词时间序列的重要性以及关键词的数量。CEW-DTW是由一个精心设计的动态时间翘曲- delta (DTW-D)模型发展而来的。我们选择亚马逊问答数据作为我们的评估数据集。我们利用熵来去除答案向量中的噪声。在实验中,我们采用归一化贴现累积增益(nDCG)作为测试模型的评估规则。在答案排序方面,CEW-DTW比动态时间翘曲(DTW)和动态时间翘曲- d (DTW- d)具有更好的性能。一组广泛的评价结果证明了CEW-DTW模型对答案排序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Normalization and Database Design for Joglosemar Tourism Management of fault tolerance and traffic congestion in cloud data center Development of smart public transportation system in Jakarta city based on integrated IoT platform Improving the quality of enterprise IT goals using COBIT 5 prioritization approach Data mining technique with cluster anaysis use K-means algorithm for LQ45 index on Indonesia stock exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1