Mosarrat Samiha Kabir , Hong Wang , Stephanie Luster-Teasley , Lifeng Zhang , Renzun Zhao
{"title":"Microplastics in landfill leachate: Sources, detection, occurrence, and removal","authors":"Mosarrat Samiha Kabir , Hong Wang , Stephanie Luster-Teasley , Lifeng Zhang , Renzun Zhao","doi":"10.1016/j.ese.2023.100256","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills, landfill leachate is becoming a significant reservoir of microplastics. The release of microplastics from landfill leachate into the environment can have undesirable effects on humans and biota. This study provides the state of the science regarding the source, detection, occurrence, and remediation of microplastics in landfill leachate based on a comprehensive review of the scientific literature, mostly in the recent decade. Solid waste and wastewater treatment residue are the primary sources of microplastics in landfill leachate. Microplastic concentration in raw and treated landfill leachate varied between 0–382 and 0–2.7 items L<sup>−1</sup>. Microplastics in raw landfill leachate are largely attributable to local plastic waste production and solid waste management practices. Polyethylene, polystyrene, and polypropylene are the most prevalent microplastic polymers in landfill leachate. Even though the colors of microplastics are primarily determined by their parent plastic waste, the predominance of light-colored microplastics in landfill leachate indicates long-term degradation. The identified morphologies of microplastics in leachate from all published sources contain fiber and fragments the most. Depending on the treatment method, leachate treatment processes can achieve microplastic removal rates between 3% and 100%. The review also provides unique perspectives on microplastics in landfill leachate in terms of remediation, final disposal, fate and transport among engineering systems, and source reduction, etc. The landfill–wastewater treatment plant loop and bioreactor landfills present unique difficulties and opportunities for managing microplastics induced by landfill leachate.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"16 ","pages":"Article 100256"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/e7/main.PMC10024173.pdf","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000212","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 19
Abstract
Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills, landfill leachate is becoming a significant reservoir of microplastics. The release of microplastics from landfill leachate into the environment can have undesirable effects on humans and biota. This study provides the state of the science regarding the source, detection, occurrence, and remediation of microplastics in landfill leachate based on a comprehensive review of the scientific literature, mostly in the recent decade. Solid waste and wastewater treatment residue are the primary sources of microplastics in landfill leachate. Microplastic concentration in raw and treated landfill leachate varied between 0–382 and 0–2.7 items L−1. Microplastics in raw landfill leachate are largely attributable to local plastic waste production and solid waste management practices. Polyethylene, polystyrene, and polypropylene are the most prevalent microplastic polymers in landfill leachate. Even though the colors of microplastics are primarily determined by their parent plastic waste, the predominance of light-colored microplastics in landfill leachate indicates long-term degradation. The identified morphologies of microplastics in leachate from all published sources contain fiber and fragments the most. Depending on the treatment method, leachate treatment processes can achieve microplastic removal rates between 3% and 100%. The review also provides unique perspectives on microplastics in landfill leachate in terms of remediation, final disposal, fate and transport among engineering systems, and source reduction, etc. The landfill–wastewater treatment plant loop and bioreactor landfills present unique difficulties and opportunities for managing microplastics induced by landfill leachate.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.