H. Yasuga, Atsushi Eda, K. Suto, T. Tachi, E. Iwase
{"title":"An Origami-Structured Flexible Electronic Substrate with Faces Parallel to Target-of-Attachment Surfaces","authors":"H. Yasuga, Atsushi Eda, K. Suto, T. Tachi, E. Iwase","doi":"10.1109/MEMS46641.2020.9056110","DOIUrl":null,"url":null,"abstract":"We propose a flexible electronic substrate structured by Origami folding of non-stretchable film with faces parallel to target-of-attachment surfaces. A folding (“Origami”) or cutting (“Kirigami”) of a thin film have opened up the application of non-stretchable materials to flexible electronic devices attached to a curved surface. In this paper, we propose origami-structured flexible electronic substrates which have faces parallel to the target-of-attachment surface. The parallel faces have engineering importance and usefulness for taking direct contact with target-of-attachment surfaces and mounting electronic elements, e.g. sensors or light emitters. These characteristics are expected to allow for the realization of flexible devices capable of sensing shear force or flow velocity parallel to object's surfaces.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"38 44","pages":"909-912"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a flexible electronic substrate structured by Origami folding of non-stretchable film with faces parallel to target-of-attachment surfaces. A folding (“Origami”) or cutting (“Kirigami”) of a thin film have opened up the application of non-stretchable materials to flexible electronic devices attached to a curved surface. In this paper, we propose origami-structured flexible electronic substrates which have faces parallel to the target-of-attachment surface. The parallel faces have engineering importance and usefulness for taking direct contact with target-of-attachment surfaces and mounting electronic elements, e.g. sensors or light emitters. These characteristics are expected to allow for the realization of flexible devices capable of sensing shear force or flow velocity parallel to object's surfaces.