{"title":"Neuronal and astrocytic protein degradation are critical for fear memory formation.","authors":"Kayla Farrell, Taylor McFadden, Timothy J Jarome","doi":"10.1101/lm.053716.122","DOIUrl":null,"url":null,"abstract":"<p><p>Strong evidence has implicated proteasome-mediated protein degradation in the memory consolidation process. However, due to the use of pharmacological approaches, the cell type specificity of this remains unknown. Here, we used neuron-specific and novel astrocyte-specific CRISPR-dCas9-KRAB-MECP2 plasmids to inhibit protein degradation in a cell type-specific manner in the amygdala of male rats. We found that while inhibition of neuronal, but not astrocytic, protein degradation impaired performance during the training session, both resulted in impaired contextual fear memory retention. Together, these data provide the first evidence of a cell type-specific role for protein degradation in the memory consolidation process.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 3","pages":"70-73"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053716.122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Strong evidence has implicated proteasome-mediated protein degradation in the memory consolidation process. However, due to the use of pharmacological approaches, the cell type specificity of this remains unknown. Here, we used neuron-specific and novel astrocyte-specific CRISPR-dCas9-KRAB-MECP2 plasmids to inhibit protein degradation in a cell type-specific manner in the amygdala of male rats. We found that while inhibition of neuronal, but not astrocytic, protein degradation impaired performance during the training session, both resulted in impaired contextual fear memory retention. Together, these data provide the first evidence of a cell type-specific role for protein degradation in the memory consolidation process.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.