Han Gao , Huixin Li , Chen Lin , Pedro J.J. Alvarez , Caroline A. Masiello , Dongqiang Zhu , Ao Kong , Xiaolei Qu
{"title":"Molecular signature of soil organic matter under different land uses in the Lake Chaohu Basin","authors":"Han Gao , Huixin Li , Chen Lin , Pedro J.J. Alvarez , Caroline A. Masiello , Dongqiang Zhu , Ao Kong , Xiaolei Qu","doi":"10.1016/j.eehl.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>The concentration and molecular composition of soil organic matter (SOM) are important factors in mitigation against climate change as well as providing other ecosystem services. Our quantitative understanding of how land use influences SOM molecular composition and associated turnover dynamics is limited, which underscores the need for high-throughput analytical approaches and molecular marker signatures to clarify this etiology. Combining a high-throughput untargeted mass spectrometry screening and molecular markers, we show that forest, farmland and urban land uses result in distinct molecular signatures of SOM in the Lake Chaohu Basin. Molecular markers indicate that forest SOM has abundant carbon contents from vegetation and condensed organic carbon, leading to high soil organic carbon (SOC) concentration. Farmland SOM has moderate carbon contents from vegetation, and limited content of condensed organic carbon, with SOC significantly lower than that of forest soils. Urban SOM has high abundance of condensed organic carbon markers due to anthropogenic activities but relatively low in markers from vegetation. Consistently, urban soils have the highest black carbon/SOC ratio among these land uses. Overall, our results suggested that the molecular signature of SOM varies significantly with land use in the Lake Chaohu Basin, influencing carbon dynamics. Our strategy of molecular fingerprinting and marker discovery is expected to enlighten further research on SOM molecular signatures and cycling dynamics.</p></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"1 4","pages":"Pages 212-218"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772985022000369/pdfft?md5=6de101cc0be0f5ad065836dde8ead850&pid=1-s2.0-S2772985022000369-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985022000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The concentration and molecular composition of soil organic matter (SOM) are important factors in mitigation against climate change as well as providing other ecosystem services. Our quantitative understanding of how land use influences SOM molecular composition and associated turnover dynamics is limited, which underscores the need for high-throughput analytical approaches and molecular marker signatures to clarify this etiology. Combining a high-throughput untargeted mass spectrometry screening and molecular markers, we show that forest, farmland and urban land uses result in distinct molecular signatures of SOM in the Lake Chaohu Basin. Molecular markers indicate that forest SOM has abundant carbon contents from vegetation and condensed organic carbon, leading to high soil organic carbon (SOC) concentration. Farmland SOM has moderate carbon contents from vegetation, and limited content of condensed organic carbon, with SOC significantly lower than that of forest soils. Urban SOM has high abundance of condensed organic carbon markers due to anthropogenic activities but relatively low in markers from vegetation. Consistently, urban soils have the highest black carbon/SOC ratio among these land uses. Overall, our results suggested that the molecular signature of SOM varies significantly with land use in the Lake Chaohu Basin, influencing carbon dynamics. Our strategy of molecular fingerprinting and marker discovery is expected to enlighten further research on SOM molecular signatures and cycling dynamics.
期刊介绍:
Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health.
Scopes
EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include:
1) Ecology and Biodiversity Conservation
Biodiversity
Ecological restoration
Ecological safety
Protected area
2) Environmental and Biological Fate of Emerging Contaminants
Environmental behaviors
Environmental processes
Environmental microbiology
3) Human Exposure and Health Effects
Environmental toxicology
Environmental epidemiology
Environmental health risk
Food safety
4) Evaluation, Management and Regulation of Environmental Risks
Chemical safety
Environmental policy
Health policy
Health economics
Environmental remediation