{"title":"Test Bed for Safety Assessment of New e-Navigation Systems","authors":"Axel Hahn","doi":"10.1016/j.enavi.2014.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>New e-navigation strains require new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. Suitable engineering and safety/risk assessment methods facilitate these efforts. Understanding maritime transportation as a sociotechnical system allows the application of system-engineering methods. Formal, simulation based and in situ verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a physical test bed. The test bed provides reference ports and waterways in combination with an experimental Vessel Traffic Services (VTS) system and a mobile integrated bridge: This enables in situ experiments for technological evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with simulation based assessment and ending in physical real world demonstrations</p></div>","PeriodicalId":100696,"journal":{"name":"International Journal of e-Navigation and Maritime Economy","volume":"1 ","pages":"Pages 14-28"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enavi.2014.12.003","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of e-Navigation and Maritime Economy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405535214000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
New e-navigation strains require new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. Suitable engineering and safety/risk assessment methods facilitate these efforts. Understanding maritime transportation as a sociotechnical system allows the application of system-engineering methods. Formal, simulation based and in situ verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a physical test bed. The test bed provides reference ports and waterways in combination with an experimental Vessel Traffic Services (VTS) system and a mobile integrated bridge: This enables in situ experiments for technological evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with simulation based assessment and ending in physical real world demonstrations