One and done: A single encounter with an invasive predator determines subsequent antipredator behavior of naive juvenile lizards

Travis R. Robbins , Tracy Langkilde
{"title":"One and done: A single encounter with an invasive predator determines subsequent antipredator behavior of naive juvenile lizards","authors":"Travis R. Robbins ,&nbsp;Tracy Langkilde","doi":"10.1016/j.ecochg.2021.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Plastic changes in behavior can allow animals to adapt to changes in their environment, but the adaptive role of rapid behavioral adjustments for surviving anthropogenically-induced environmental change is less well understood, especially with regard to behavioral plasticity facilitating the evolution of other traits. Here we examine the ability of lizards to rapidly acquire adaptive antipredator behavior following a single predator exposure. Fence lizards typically rely on crypsis to avoid predator detection, but this is maladaptive in the face of invasive venomous fire ants that can successfully locate and attack immobile lizards. Fire ant-naïve juvenile lizards shifted their behavior to flee from fire ant attack after a single encounter with these predatory ants. Our results provide evidence of rapid phenotypic accommodation to an environmental threat that likely played a role in population persistence after fire ant invasion and subsequent evolution of multiple traits.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900521000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic changes in behavior can allow animals to adapt to changes in their environment, but the adaptive role of rapid behavioral adjustments for surviving anthropogenically-induced environmental change is less well understood, especially with regard to behavioral plasticity facilitating the evolution of other traits. Here we examine the ability of lizards to rapidly acquire adaptive antipredator behavior following a single predator exposure. Fence lizards typically rely on crypsis to avoid predator detection, but this is maladaptive in the face of invasive venomous fire ants that can successfully locate and attack immobile lizards. Fire ant-naïve juvenile lizards shifted their behavior to flee from fire ant attack after a single encounter with these predatory ants. Our results provide evidence of rapid phenotypic accommodation to an environmental threat that likely played a role in population persistence after fire ant invasion and subsequent evolution of multiple traits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一次与入侵掠食者的接触决定了幼稚的幼蜥随后的反掠食者行为
行为的可塑性变化可以使动物适应环境的变化,但人类活动引起的环境变化对快速行为调整的适应性作用知之甚少,特别是在促进其他特征进化的行为可塑性方面。在这里,我们研究了蜥蜴在单一捕食者暴露后迅速获得适应性反捕食者行为的能力。栅栏蜥蜴通常依靠隐蔽来避免捕食者的发现,但面对入侵的有毒火蚁,这是不适应的,火蚁可以成功地定位和攻击不移动的蜥蜴。火蜥蜴ant-naïve幼蜥蜴在遇到这些掠食性蚂蚁后改变了它们的行为以逃离火蚁的攻击。我们的研究结果提供了对环境威胁的快速表型适应的证据,这种适应可能在火蚁入侵后的种群持久性和随后的多种性状进化中发挥了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Anticipated impacts in habitat of diagnostic species of potential natural vegetations due to climate change at the ecotone between temperate and boreal forests Will global warming reduce the nutritional quality of wild blueberries? Experimental exposure to winter thaws reveals tipping point in yellow birch bud mortality and phenology in the northern temperate forest of Québec, Canada Deerly departed: Using motor-vehicle accidents to determine factors influencing white-tailed deer rut timing in Ontario, Canada Future sea-level rise impacts to Olive Ridley (Lepidochelys olivacea) and Green Sea Turtle (Chelonia mydas) nesting habitat on the Osa Peninsula, Costa Rica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1