Machine learning for semiconductors

Chip Pub Date : 2022-12-01 DOI:10.1016/j.chip.2022.100033
Duan-Yang Liu , Li-Ming Xu , Xu-Min Lin , Xing Wei , Wen-Jie Yu , Yang Wang , Zhong-Ming Wei
{"title":"Machine learning for semiconductors","authors":"Duan-Yang Liu ,&nbsp;Li-Ming Xu ,&nbsp;Xu-Min Lin ,&nbsp;Xing Wei ,&nbsp;Wen-Jie Yu ,&nbsp;Yang Wang ,&nbsp;Zhong-Ming Wei","doi":"10.1016/j.chip.2022.100033","DOIUrl":null,"url":null,"abstract":"<div><p>Thanks to the increasingly high standard of electronics, the semiconductor material science and semiconductor manufacturing have been booming in the last few decades, with massive data accumulated in both fields. If analyzed effectively, the data will be conducive to the discovery of new semiconductor materials and the development of semicondulctor manufacturing. Fortunately, machine learning, as a fast-growing tool from computer science, is expected to significantly speed up the data analysis. In recently years, many researches on machine learning study of semiconductor materials and semiconductor manufacturing have been reported. This article is aimed to introduce these progress and present some prospects in this field.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 4","pages":"Article 100033"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000314/pdfft?md5=aea3a91afcb744ac50fea7f377b09e96&pid=1-s2.0-S2709472322000314-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Thanks to the increasingly high standard of electronics, the semiconductor material science and semiconductor manufacturing have been booming in the last few decades, with massive data accumulated in both fields. If analyzed effectively, the data will be conducive to the discovery of new semiconductor materials and the development of semicondulctor manufacturing. Fortunately, machine learning, as a fast-growing tool from computer science, is expected to significantly speed up the data analysis. In recently years, many researches on machine learning study of semiconductor materials and semiconductor manufacturing have been reported. This article is aimed to introduce these progress and present some prospects in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半导体的机器学习
由于电子产品的标准越来越高,半导体材料科学和半导体制造在过去的几十年里蓬勃发展,在这两个领域积累了大量的数据。如果对这些数据进行有效的分析,将有利于发现新的半导体材料和半导体制造业的发展。幸运的是,机器学习作为一种快速发展的计算机科学工具,有望大大加快数据分析的速度。近年来,在半导体材料和半导体制造领域的机器学习研究有很多报道。本文旨在介绍这些研究进展,并对该领域的研究前景进行展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1