{"title":"Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives","authors":"Ragini Singh , S.P. Srinivas , Mamta Kumawat , Hemant Kumar Daima","doi":"10.1016/j.onano.2023.100194","DOIUrl":null,"url":null,"abstract":"<div><p>Biomedical applications of nanomaterials, especially in diagnosing, management, and treatment of diseases are evolving. However, nanotoxicity remains a major challenge in availing the full biomedical potential of engineered nanomaterials. Nevertheless, recent advancements in the field have suggested that smart engineering of targeting ligands and presence of biomolecules on the surface of nanomaterials can reduce nanotoxicity through differential affinity, enhanced biocompatibility, and efficient internalization. Further, certain ligand-functionalized nanomaterials permit their tracking in cells and tissues over a prolonged period of time, making them suitable for nanomedicine applications. In this seminal review, a range of strategies, which have been employed for surface functionalization of nanomaterials using various biomolecules that confer amide / hydrazone bonds, thiol binding, and surface silanization have been evaluated. The challenges, and impact of surface functionalization of nanomaterials on cellular uptake, drug targeting, molecular imaging, and biocompatibility are also discussed. Finally, nanotoxicity aspects and recommendations of ligand-based surface engineered nanomaterials are detailed for future biomedical applications.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"15 ","pages":"Article 100194"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352952023000737/pdfft?md5=3d3ce2db98c6eb566298bdf5420f435e&pid=1-s2.0-S2352952023000737-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Biomedical applications of nanomaterials, especially in diagnosing, management, and treatment of diseases are evolving. However, nanotoxicity remains a major challenge in availing the full biomedical potential of engineered nanomaterials. Nevertheless, recent advancements in the field have suggested that smart engineering of targeting ligands and presence of biomolecules on the surface of nanomaterials can reduce nanotoxicity through differential affinity, enhanced biocompatibility, and efficient internalization. Further, certain ligand-functionalized nanomaterials permit their tracking in cells and tissues over a prolonged period of time, making them suitable for nanomedicine applications. In this seminal review, a range of strategies, which have been employed for surface functionalization of nanomaterials using various biomolecules that confer amide / hydrazone bonds, thiol binding, and surface silanization have been evaluated. The challenges, and impact of surface functionalization of nanomaterials on cellular uptake, drug targeting, molecular imaging, and biocompatibility are also discussed. Finally, nanotoxicity aspects and recommendations of ligand-based surface engineered nanomaterials are detailed for future biomedical applications.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.