Advanced geochemical exploration knowledge using machine learning: Prediction of unknown elemental concentrations and operational prioritization of Re-analysis campaigns

Steven E. Zhang , Julie E. Bourdeau , Glen T. Nwaila , Yousef Ghorbani
{"title":"Advanced geochemical exploration knowledge using machine learning: Prediction of unknown elemental concentrations and operational prioritization of Re-analysis campaigns","authors":"Steven E. Zhang ,&nbsp;Julie E. Bourdeau ,&nbsp;Glen T. Nwaila ,&nbsp;Yousef Ghorbani","doi":"10.1016/j.aiig.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In exploration geochemistry, advances in the detection limit, breadth of elements analyze-able, accuracy and precision of analytical instruments have motivated the re-analysis of legacy samples to improve confidence in geochemical data and gain more insights into potentially mineralized areas. While a re-analysis campaign in a geochemical exploration program modernizes legacy geochemical data by providing more trustworthy and higher-dimensional geochemical data, especially where modern data is considerably different than legacy data, it is an expensive exercise. The risk associated with modernizing such legacy data lies within its uncertainty in return (e.g., the possibility of new discoveries, in primarily greenfield settings). Without any advanced knowledge of yet unanalyzed elements, the importance of re-analyses remains ambiguous. To address this uncertainty, we apply machine learning to multivariate geochemical data from different regions in Canada (i.e., the Churchill Province and the Trans-Hudson Orogen) in order to use legacy geochemical data to predict modern and higher dimensional multi-elemental concentrations ahead of planned re-analyses. Our study demonstrates that legacy and modern geochemical data can be repurposed to predict yet unanalyzed elements that will be realized from re-analyses and in a manner that significantly reduces the latency to downstream usage of modern geochemical data (e.g., prospectivity mapping). Findings from this study serve as a pillar of a framework for exploration geologists to predictively explore and prioritize potentially mineralized districts for further prospects in a timely manner before employing more invasive and expensive techniques.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"3 ","pages":"Pages 86-100"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544122000296/pdfft?md5=115f57a35bc434c4294614fe797ddff6&pid=1-s2.0-S2666544122000296-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544122000296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In exploration geochemistry, advances in the detection limit, breadth of elements analyze-able, accuracy and precision of analytical instruments have motivated the re-analysis of legacy samples to improve confidence in geochemical data and gain more insights into potentially mineralized areas. While a re-analysis campaign in a geochemical exploration program modernizes legacy geochemical data by providing more trustworthy and higher-dimensional geochemical data, especially where modern data is considerably different than legacy data, it is an expensive exercise. The risk associated with modernizing such legacy data lies within its uncertainty in return (e.g., the possibility of new discoveries, in primarily greenfield settings). Without any advanced knowledge of yet unanalyzed elements, the importance of re-analyses remains ambiguous. To address this uncertainty, we apply machine learning to multivariate geochemical data from different regions in Canada (i.e., the Churchill Province and the Trans-Hudson Orogen) in order to use legacy geochemical data to predict modern and higher dimensional multi-elemental concentrations ahead of planned re-analyses. Our study demonstrates that legacy and modern geochemical data can be repurposed to predict yet unanalyzed elements that will be realized from re-analyses and in a manner that significantly reduces the latency to downstream usage of modern geochemical data (e.g., prospectivity mapping). Findings from this study serve as a pillar of a framework for exploration geologists to predictively explore and prioritize potentially mineralized districts for further prospects in a timely manner before employing more invasive and expensive techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习的先进地球化学勘探知识:预测未知元素浓度和重新分析活动的操作优先级
在勘探地球化学领域,探测极限、可分析元素的广度、分析仪器的准确度和精密度等方面的进步,推动了对遗留样品的重新分析,以提高地球化学数据的可信度,并对潜在矿化区有更多的了解。虽然地球化学勘探项目中的重新分析活动通过提供更可靠、更高维的地球化学数据,使遗留地球化学数据现代化,特别是在现代数据与遗留数据有很大不同的情况下,这是一项昂贵的工作。对这些遗留数据进行现代化改造的风险在于其回报的不确定性(例如,新发现的可能性,主要是在绿地环境中)。由于对尚未分析的元素没有任何先进的知识,重新分析的重要性仍然模糊不清。为了解决这一不确定性,我们将机器学习应用于加拿大不同地区(即丘吉尔省和跨哈德逊造山带)的多元地球化学数据,以便在计划的重新分析之前使用传统的地球化学数据来预测现代和更高维度的多元素浓度。我们的研究表明,遗留的和现代的地球化学数据可以被重新利用来预测尚未分析的元素,这些元素将通过重新分析来实现,并且以一种显著减少现代地球化学数据下游使用的延迟的方式(例如,远景图)。这项研究的发现为勘探地质学家提供了一个框架的支柱,以便在采用更具侵入性和昂贵的技术之前,及时对潜在矿化地区进行预测勘探和优先排序,以便进一步进行勘探。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1