Check-It: A plugin for detecting fake news on the web

Q1 Social Sciences Online Social Networks and Media Pub Date : 2021-09-01 DOI:10.1016/j.osnem.2021.100156
Demetris Paschalides , Chrysovalantis Christodoulou , Kalia Orphanou , Rafael Andreou , Alexandros Kornilakis , George Pallis , Marios D. Dikaiakos , Evangelos Markatos
{"title":"Check-It: A plugin for detecting fake news on the web","authors":"Demetris Paschalides ,&nbsp;Chrysovalantis Christodoulou ,&nbsp;Kalia Orphanou ,&nbsp;Rafael Andreou ,&nbsp;Alexandros Kornilakis ,&nbsp;George Pallis ,&nbsp;Marios D. Dikaiakos ,&nbsp;Evangelos Markatos","doi":"10.1016/j.osnem.2021.100156","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The rapid proliferation of misinformation and disinformation on the Internet has brought dire consequences upon societies around the world, fostering extremism, undermining social cohesion and threatening the democratic process. This impact can be attested by recent events like the COVID-19 pandemic and the 2020 US presidential election. The impact of misinformation has been so deep and wide that several authors characterize the present historic period as the “post-truth” era. Many recent efforts seek to contain the proliferation of misinformation by automating the identification of fake news through various techniques that exploit signals derived from linguistic processing of online content, analysis of message </span>diffusion patterns, reputation lists, etc. In this paper we describe the design, implementation of, and experimentation with Check-It, a lightweight, privacy preserving browser plugin that detects fake-news. Check-It combines knowledge extracted from a variety of signals, and outperforms state-of-the-art methods on commonly-used datasets, achieving more than 90% accuracy, as well as a smooth </span>user experience.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osnem.2021.100156","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696421000380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 6

Abstract

The rapid proliferation of misinformation and disinformation on the Internet has brought dire consequences upon societies around the world, fostering extremism, undermining social cohesion and threatening the democratic process. This impact can be attested by recent events like the COVID-19 pandemic and the 2020 US presidential election. The impact of misinformation has been so deep and wide that several authors characterize the present historic period as the “post-truth” era. Many recent efforts seek to contain the proliferation of misinformation by automating the identification of fake news through various techniques that exploit signals derived from linguistic processing of online content, analysis of message diffusion patterns, reputation lists, etc. In this paper we describe the design, implementation of, and experimentation with Check-It, a lightweight, privacy preserving browser plugin that detects fake-news. Check-It combines knowledge extracted from a variety of signals, and outperforms state-of-the-art methods on commonly-used datasets, achieving more than 90% accuracy, as well as a smooth user experience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Check-It:一个用于检测网络上假新闻的插件
互联网上错误信息和虚假信息的迅速扩散给世界各地的社会带来了可怕的后果,助长了极端主义,破坏了社会凝聚力,威胁到民主进程。这种影响可以从COVID-19大流行和2020年美国总统大选等近期事件中得到证明。错误信息的影响是如此深刻和广泛,以至于一些作者将当前的历史时期描述为“后真相”时代。最近的许多努力试图通过各种技术自动识别假新闻来遏制错误信息的扩散,这些技术利用来自在线内容的语言处理、消息传播模式分析、声誉列表等的信号。在本文中,我们描述了Check-It的设计、实现和实验,Check-It是一个轻量级的、保护隐私的浏览器插件,可以检测假新闻。Check-It结合了从各种信号中提取的知识,在常用数据集上优于最先进的方法,达到90%以上的准确率,以及流畅的用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1