Factor analyzing ordinal items requires substantive knowledge of response marginals.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-02-01 Epub Date: 2022-05-19 DOI:10.1037/met0000495
Steffen Grønneberg, Njål Foldnes
{"title":"Factor analyzing ordinal items requires substantive knowledge of response marginals.","authors":"Steffen Grønneberg, Njål Foldnes","doi":"10.1037/met0000495","DOIUrl":null,"url":null,"abstract":"<p><p>In the social sciences, measurement scales often consist of ordinal items and are commonly analyzed using factor analysis. Either data are treated as continuous, or a discretization framework is imposed in order to take the ordinal scale properly into account. Correlational analysis is central in both approaches, and we review recent theory on correlations obtained from ordinal data. To ensure appropriate estimation, the item distributions prior to discretization should be (approximately) known, or the thresholds should be known to be equally spaced. We refer to such knowledge as substantive because it may not be extracted from the data, but must be rooted in expert knowledge about the data-generating process. An illustrative case is presented where absence of substantive knowledge of the item distributions inevitably leads the analyst to conclude that a truly two-dimensional case is perfectly one-dimensional. Additional studies probe the extent to which violation of the standard assumption of underlying normality leads to bias in correlations and factor models. As a remedy, we propose an adjusted polychoric estimator for ordinal factor analysis that takes substantive knowledge into account. Also, we demonstrate how to use the adjusted estimator in sensitivity analysis when the continuous item distributions are known only approximately. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"65-87"},"PeriodicalIF":7.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000495","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the social sciences, measurement scales often consist of ordinal items and are commonly analyzed using factor analysis. Either data are treated as continuous, or a discretization framework is imposed in order to take the ordinal scale properly into account. Correlational analysis is central in both approaches, and we review recent theory on correlations obtained from ordinal data. To ensure appropriate estimation, the item distributions prior to discretization should be (approximately) known, or the thresholds should be known to be equally spaced. We refer to such knowledge as substantive because it may not be extracted from the data, but must be rooted in expert knowledge about the data-generating process. An illustrative case is presented where absence of substantive knowledge of the item distributions inevitably leads the analyst to conclude that a truly two-dimensional case is perfectly one-dimensional. Additional studies probe the extent to which violation of the standard assumption of underlying normality leads to bias in correlations and factor models. As a remedy, we propose an adjusted polychoric estimator for ordinal factor analysis that takes substantive knowledge into account. Also, we demonstrate how to use the adjusted estimator in sensitivity analysis when the continuous item distributions are known only approximately. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对序数项目进行因子分析需要对反应边际有实质性的了解。
在社会科学领域,测量量表通常由序数项目组成,通常使用因子分析进行分析。要么将数据视为连续数据,要么采用离散化框架,以便适当考虑序数量表。相关分析是这两种方法的核心,我们将回顾从序数数据中获得相关性的最新理论。为了确保适当的估计,离散化之前的项目分布应该是(近似)已知的,或者阈值应该是已知的等距分布。我们将这种知识称为实质性知识,因为它可能无法从数据中提取,而必须植根于有关数据生成过程的专家知识。我们将举例说明,如果缺乏关于项目分布的实质性知识,分析人员必然会得出结论,认为一个真正的二维案例完全是一维的。其他研究还探讨了违反基本正态性标准假设在多大程度上会导致相关性和因子模型出现偏差。作为一种补救措施,我们为序数因子分析提出了一种考虑到实质性知识的调整多变量估计器。此外,我们还演示了当连续项目分布仅为近似已知时,如何在敏感性分析中使用调整后的估计器。(PsycInfo Database Record (c) 2024 APA, all rights reserved)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. How to conduct an integrative mixed methods meta-analysis: A tutorial for the systematic review of quantitative and qualitative evidence. Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs. Data-driven covariate selection for confounding adjustment by focusing on the stability of the effect estimator. Estimating and investigating multiple constructs multiple indicators social relations models with and without roles within the traditional structural equation modeling framework: A tutorial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1