Recognising humans by gait via parametric canonical space

P.S. Huang, C.J. Harris, M.S. Nixon
{"title":"Recognising humans by gait via parametric canonical space","authors":"P.S. Huang,&nbsp;C.J. Harris,&nbsp;M.S. Nixon","doi":"10.1016/S0954-1810(99)00008-4","DOIUrl":null,"url":null,"abstract":"<div><p>Based on principal component analysis (PCA), eigenspace transformation (EST) was demonstrated to be a potent metric in automatic face recognition and gait analysis by template matching, but without using data analysis to increase classification capability. Gait is a new biometric aimed to recognise subjects by the way they walk. In this article, we propose a new approach which combines canonical space transformation (CST) based on Canonical Analysis (CA), with EST for feature extraction. This method can be used to reduce data dimensionality and to optimise the class separability of different gait classes simultaneously. Each image template is projected from the high-dimensional image space to a low-dimensional canonical space. Using template matching, recognition of human gait becomes much more accurate and robust in this new space. Experimental results on a small database show how subjects can be recognised with 100% accuracy by their gait, using this method.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 4","pages":"Pages 359-366"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00008-4","citationCount":"173","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181099000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173

Abstract

Based on principal component analysis (PCA), eigenspace transformation (EST) was demonstrated to be a potent metric in automatic face recognition and gait analysis by template matching, but without using data analysis to increase classification capability. Gait is a new biometric aimed to recognise subjects by the way they walk. In this article, we propose a new approach which combines canonical space transformation (CST) based on Canonical Analysis (CA), with EST for feature extraction. This method can be used to reduce data dimensionality and to optimise the class separability of different gait classes simultaneously. Each image template is projected from the high-dimensional image space to a low-dimensional canonical space. Using template matching, recognition of human gait becomes much more accurate and robust in this new space. Experimental results on a small database show how subjects can be recognised with 100% accuracy by their gait, using this method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数正则空间的步态识别
基于主成分分析(PCA)的特征空间变换(EST)在模板匹配的自动人脸识别和步态分析中是一种有效的度量方法,但不需要使用数据分析来提高分类能力。步态是一种新的生物识别技术,旨在通过人们走路的方式来识别他们。在本文中,我们提出了一种将基于典型分析(CA)的典型空间变换(CST)与EST相结合的特征提取方法。该方法可以降低数据维数,同时优化不同步态类的可分离性。每个图像模板从高维图像空间投影到低维正则空间。采用模板匹配的方法,使步态识别的准确性和鲁棒性大大提高。在一个小型数据库上的实验结果表明,使用这种方法可以通过步态100%准确地识别受试者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1