Neural network modeling of active devices for use in MMIC design

F. Güneş, H. Torpi, B.A. Çetiner
{"title":"Neural network modeling of active devices for use in MMIC design","authors":"F. Güneş,&nbsp;H. Torpi,&nbsp;B.A. Çetiner","doi":"10.1016/S0954-1810(99)00011-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work can be classified into three parts: The first part is a multidimensional signal–noise neural network model for a microwave small-signal transistor. Here the device is modeled by a black box, whose small signal and noise parameters are evaluated through a neural network, based upon the fitting of both these parameters for multiple bias and configuration with their target values. The second part is the computer simulation of the possible performance (<em>F</em>,<em>V</em><sub><em>i</em></sub>,<em>G</em><sub>tmax</sub>) triplets. In the final part, which is the combination of the first two parts, the performance curves are obtained using the relationships among operation conditions <em>f</em>, <em>V</em><sub>CE</sub>, and <em>I</em><sub>CE</sub>; the noise figure, input VSWR and maximum stable transducer gain.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 4","pages":"Pages 385-392"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(99)00011-4","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181099000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This work can be classified into three parts: The first part is a multidimensional signal–noise neural network model for a microwave small-signal transistor. Here the device is modeled by a black box, whose small signal and noise parameters are evaluated through a neural network, based upon the fitting of both these parameters for multiple bias and configuration with their target values. The second part is the computer simulation of the possible performance (F,Vi,Gtmax) triplets. In the final part, which is the combination of the first two parts, the performance curves are obtained using the relationships among operation conditions f, VCE, and ICE; the noise figure, input VSWR and maximum stable transducer gain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于MMIC设计的有源器件的神经网络建模
本文主要分为三个部分:第一部分是微波小信号晶体管的多维信噪神经网络模型。在这里,设备由一个黑箱建模,通过神经网络评估其小信号和噪声参数,基于这些参数对多偏置和配置与其目标值的拟合。第二部分是计算机模拟可能的性能(F,Vi,Gtmax)三元组。最后一部分是前两部分的结合,利用工况f、VCE、ICE之间的关系得到了性能曲线;噪声系数、输入驻波比和最大稳定传感器增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1