Aishwarya Venkataramanan , Antoine Richard , Cédric Pradalier
{"title":"A data driven approach to generate realistic 3D tree barks","authors":"Aishwarya Venkataramanan , Antoine Richard , Cédric Pradalier","doi":"10.1016/j.gmod.2022.101166","DOIUrl":null,"url":null,"abstract":"<div><p>3D models of trees are ubiquitous in video games<span>, movies, and simulators. It is of paramount importance to generate high quality 3D models to enhance the visual content, and increase the diversity of the available models. In this work, we propose a methodology to create realistic 3D models of tree barks from a consumer-grade hand-held camera. Additionally, we present a pipeline that makes use of multi-view 3D Reconstruction<span> and Generative Adversarial Networks (GANs) to generate the 3D models of the barks. We introduce a GAN referred to as the Depth-Reinforced-SPADE to generate the surfaces of the tree barks and the bark color concurrently. This GAN gives extensive control on what is being generated on the bark: moss, lichen, scars, etc. Finally, by testing our pipeline on different Northern-European trees whose barks exhibit radically different color patterns and surfaces, we show that our pipeline can be used to generate a broad panel of tree species’ bark.</span></span></p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"123 ","pages":"Article 101166"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152407032200042X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
3D models of trees are ubiquitous in video games, movies, and simulators. It is of paramount importance to generate high quality 3D models to enhance the visual content, and increase the diversity of the available models. In this work, we propose a methodology to create realistic 3D models of tree barks from a consumer-grade hand-held camera. Additionally, we present a pipeline that makes use of multi-view 3D Reconstruction and Generative Adversarial Networks (GANs) to generate the 3D models of the barks. We introduce a GAN referred to as the Depth-Reinforced-SPADE to generate the surfaces of the tree barks and the bark color concurrently. This GAN gives extensive control on what is being generated on the bark: moss, lichen, scars, etc. Finally, by testing our pipeline on different Northern-European trees whose barks exhibit radically different color patterns and surfaces, we show that our pipeline can be used to generate a broad panel of tree species’ bark.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.