Jiangpeng Wang , Wing-Shan Tam , Chi-Wah Kok , Kong-Pang Pun
{"title":"A 5-bit 500MS/s flash ADC with temperature-compensated inverter-based comparators","authors":"Jiangpeng Wang , Wing-Shan Tam , Chi-Wah Kok , Kong-Pang Pun","doi":"10.1016/j.ssel.2020.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a 5-bit 500MS/s flash analog-to-digital converter (ADC) with temperature-compensated inverter-based comparators is proposed. In the proposed ADC, a complementary-average system structure is adopted. Based on this structure, inverter-based comparators are used to reduce the power consumption. However, conventional inverter-based comparators suffer from switching threshold variation when the temperature changes, which degrades the SNDR performance of the whole ADC. To tackle this problem, a temperature-compensated inverter-based comparator is proposed. Furthermore, an encoder with majority-3 bubble error correction is used in the proposed ADC to reduce bubble errors. To verify the proposed design, a prototype ADC is implemented in a 0.18 µm process. Measurements at room temperature show that the SNDR and SFDR of the proposed prototype are 29.6 dB and 34.92 dB, with a resulting ENOB of 4.62 bits. It achieves an DNL and INL of +0.33 LSB /−0.54 LSB and +0.27 LSB/−0.33 LSB, respectively, and consumes 6 mW from a 1.8-V supply. At 0 °C and 60 °C, the ADC maintains a close performance.</p></div>","PeriodicalId":101175,"journal":{"name":"Solid State Electronics Letters","volume":"2 ","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssel.2020.01.007","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589208820300077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, a 5-bit 500MS/s flash analog-to-digital converter (ADC) with temperature-compensated inverter-based comparators is proposed. In the proposed ADC, a complementary-average system structure is adopted. Based on this structure, inverter-based comparators are used to reduce the power consumption. However, conventional inverter-based comparators suffer from switching threshold variation when the temperature changes, which degrades the SNDR performance of the whole ADC. To tackle this problem, a temperature-compensated inverter-based comparator is proposed. Furthermore, an encoder with majority-3 bubble error correction is used in the proposed ADC to reduce bubble errors. To verify the proposed design, a prototype ADC is implemented in a 0.18 µm process. Measurements at room temperature show that the SNDR and SFDR of the proposed prototype are 29.6 dB and 34.92 dB, with a resulting ENOB of 4.62 bits. It achieves an DNL and INL of +0.33 LSB /−0.54 LSB and +0.27 LSB/−0.33 LSB, respectively, and consumes 6 mW from a 1.8-V supply. At 0 °C and 60 °C, the ADC maintains a close performance.