SPHINX-Based Combination Therapy as a Potential Novel Treatment Strategy for Acute Myeloid Leukaemia.

IF 2.7 4区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY British Journal of Biomedical Science Pub Date : 2023-01-01 DOI:10.3389/bjbs.2023.11041
Chigeru Wodi, Tareg Belali, Ruth Morse, Sean Porazinski, Michael Ladomery
{"title":"SPHINX-Based Combination Therapy as a Potential Novel Treatment Strategy for Acute Myeloid Leukaemia.","authors":"Chigeru Wodi,&nbsp;Tareg Belali,&nbsp;Ruth Morse,&nbsp;Sean Porazinski,&nbsp;Michael Ladomery","doi":"10.3389/bjbs.2023.11041","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Dysregulated alternative splicing is a prominent feature of cancer. The inhibition and knockdown of the SR splice factor kinase SRPK1 reduces tumour growth <i>in vivo</i>. As a result several SPRK1 inhibitors are in development including SPHINX, a 3-(trifluoromethyl)anilide scaffold. The objective of this study was to treat two leukaemic cell lines with SPHINX in combination with the established cancer drugs azacitidine and imatinib. <b>Materials and Methods:</b> We selected two representative cell lines; Kasumi-1, acute myeloid leukaemia, and K562, BCR-ABL positive chronic myeloid leukaemia. Cells were treated with SPHINX concentrations up to 10μM, and in combination with azacitidine (up to 1.5 μg/ml, Kasumi-1 cells) and imatinib (up to 20 μg/ml, K562 cells). Cell viability was determined by counting the proportion of live cells and those undergoing apoptosis through the detection of activated caspase 3/7. SRPK1 was knocked down with siRNA to confirm SPHINX results. <b>Results:</b> The effects of SPHINX were first confirmed by observing reduced levels of phosphorylated SR proteins. SPHINX significantly reduced cell viability and increased apoptosis in Kasumi-1 cells, but less prominently in K562 cells. Knockdown of SRPK1 by RNA interference similarly reduced cell viability. Combining SPHINX with azacitidine augmented the effect of azacitidine in Kasumi-1 cells. In conclusion, SPHINX reduces cell viability and increases apoptosis in the acute myeloid leukaemia cell line Kasumi-1, but less convincingly in the chronic myeloid leukaemia cell line K562. <b>Conclusion:</b> We suggest that specific types of leukaemia may present an opportunity for the development of SRPK1-targeted therapies to be used in combination with established chemotherapeutic drugs.</p>","PeriodicalId":9236,"journal":{"name":"British Journal of Biomedical Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988938/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/bjbs.2023.11041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Introduction: Dysregulated alternative splicing is a prominent feature of cancer. The inhibition and knockdown of the SR splice factor kinase SRPK1 reduces tumour growth in vivo. As a result several SPRK1 inhibitors are in development including SPHINX, a 3-(trifluoromethyl)anilide scaffold. The objective of this study was to treat two leukaemic cell lines with SPHINX in combination with the established cancer drugs azacitidine and imatinib. Materials and Methods: We selected two representative cell lines; Kasumi-1, acute myeloid leukaemia, and K562, BCR-ABL positive chronic myeloid leukaemia. Cells were treated with SPHINX concentrations up to 10μM, and in combination with azacitidine (up to 1.5 μg/ml, Kasumi-1 cells) and imatinib (up to 20 μg/ml, K562 cells). Cell viability was determined by counting the proportion of live cells and those undergoing apoptosis through the detection of activated caspase 3/7. SRPK1 was knocked down with siRNA to confirm SPHINX results. Results: The effects of SPHINX were first confirmed by observing reduced levels of phosphorylated SR proteins. SPHINX significantly reduced cell viability and increased apoptosis in Kasumi-1 cells, but less prominently in K562 cells. Knockdown of SRPK1 by RNA interference similarly reduced cell viability. Combining SPHINX with azacitidine augmented the effect of azacitidine in Kasumi-1 cells. In conclusion, SPHINX reduces cell viability and increases apoptosis in the acute myeloid leukaemia cell line Kasumi-1, but less convincingly in the chronic myeloid leukaemia cell line K562. Conclusion: We suggest that specific types of leukaemia may present an opportunity for the development of SRPK1-targeted therapies to be used in combination with established chemotherapeutic drugs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于sphinx的联合治疗作为急性髓性白血病的潜在新治疗策略。
选择性剪接失调是癌症的一个显著特征。SR剪接因子激酶SRPK1的抑制和敲低可降低肿瘤在体内的生长。因此,几种SPRK1抑制剂正在开发中,包括SPHINX,一种3-(三氟甲基)苯胺支架。本研究的目的是用SPHINX联合已建立的抗癌药物阿扎胞苷和伊马替尼治疗两种白血病细胞系。材料与方法:选取2个具有代表性的细胞系;Kasumi-1,急性髓性白血病,K562, BCR-ABL阳性慢性髓性白血病。SPHINX浓度为10μM,与阿扎胞苷(最高1.5 μg/ml, Kasumi-1细胞)和伊马替尼(最高20 μg/ml, K562细胞)联合作用于细胞。通过检测活化的caspase 3/7计数活细胞和凋亡细胞的比例来测定细胞活力。用siRNA敲低SRPK1以确认SPHINX结果。结果:SPHINX的作用首先通过观察SR蛋白磷酸化水平的降低得到证实。SPHINX在Kasumi-1细胞中显著降低细胞活力,增加细胞凋亡,而在K562细胞中不明显。通过RNA干扰敲低SRPK1同样会降低细胞活力。SPHINX与阿扎胞苷联用增强了阿扎胞苷在Kasumi-1细胞中的作用。综上所示,SPHINX在急性髓性白血病细胞系Kasumi-1中降低细胞活力,增加细胞凋亡,但在慢性髓性白血病细胞系K562中作用不明显。结论:我们认为,特定类型的白血病可能为开发srpk1靶向疗法提供了机会,该疗法可与现有化疗药物联合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
British Journal of Biomedical Science
British Journal of Biomedical Science 医学-医学实验技术
CiteScore
4.40
自引率
15.80%
发文量
29
审稿时长
>12 weeks
期刊介绍: The British Journal of Biomedical Science is committed to publishing high quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist.
期刊最新文献
Improving Biomedical Science Literacy and Patient-Directed Knowledge of Tuberculosis (TB): A Cross-Sectional Infodemiology Study Examining Readability of Patient-Facing TB Information. Mesoporous Silica Microparticle-Protein Complexes: Effects of Protein Size and Solvent Properties on Diffusion and Loading Efficiency. Neuronal Vulnerability of the Entorhinal Cortex to Tau Pathology in Alzheimer's Disease. Evaluating Lung Changes in Long COVID: Ultra-Low-Dose vs. Standard-Dose CT Chest. Editorial: Advances in Cancer Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1