Radiofrequency Exposure Levels in Greece

IF 1.8 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2023-02-14 DOI:10.1002/bem.22434
Charilaos Tyrakis, Kiki Theodorou, Yiannis Kiouvrekis, Aris Alexias, Constantin Kappas
{"title":"Radiofrequency Exposure Levels in Greece","authors":"Charilaos Tyrakis,&nbsp;Kiki Theodorou,&nbsp;Yiannis Kiouvrekis,&nbsp;Aris Alexias,&nbsp;Constantin Kappas","doi":"10.1002/bem.22434","DOIUrl":null,"url":null,"abstract":"<p>Medical Physics Department (Medical School, University of Thessaly) participated in a Greek National EMF research program (EDBM34) with the scope to measure and evaluate radiofrequency (RF) exposure (27–3000 MHz) in areas of sensitive land use. A thousand (1000) measurements were carried out at two “metropolitan locations” (Athens and Thessaloniki: 624 points) and several rest urban/rural locations (376 points). SRM 3006 spectrum analyzer manufactured by Narda Safety Test Solutions was used. The broadband mean electric field in metropolitan areas was 0.41 V/m, while in the rest of Greece was 0.36 V/m. In metropolitan areas, the predominant RF source was the TV and Radio FM signals (36.2% mean contribution to the total RF exposure level). In the rest areas, the predominant source was the systems of the meteorological and military/defensive service (31.1%). The mobile sector contributed 14.9% in metropolitan areas versus 12.2% in the rest of Greece. The predominant mobile source was 900 MHz in both cases (4.5% in metropolitan areas vs. 3.3% in the rest of Greece). The total exposure from all RF sources complied with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 safety guidelines [ICNIRP, 2020]. The maximum exposure level was 0.129% of the limit for the metropolitan areas vs. 0.110% for the rest of Greece. Nonremarkable differences between metropolitan areas' exposure and the rest of Greece. In most cases, new 5 G antennas will be added to the existing base stations. Thus, the total exposure may be increased, leading to higher safety distances. © 2023 Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"44 1-2","pages":"17-25"},"PeriodicalIF":1.8000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medical Physics Department (Medical School, University of Thessaly) participated in a Greek National EMF research program (EDBM34) with the scope to measure and evaluate radiofrequency (RF) exposure (27–3000 MHz) in areas of sensitive land use. A thousand (1000) measurements were carried out at two “metropolitan locations” (Athens and Thessaloniki: 624 points) and several rest urban/rural locations (376 points). SRM 3006 spectrum analyzer manufactured by Narda Safety Test Solutions was used. The broadband mean electric field in metropolitan areas was 0.41 V/m, while in the rest of Greece was 0.36 V/m. In metropolitan areas, the predominant RF source was the TV and Radio FM signals (36.2% mean contribution to the total RF exposure level). In the rest areas, the predominant source was the systems of the meteorological and military/defensive service (31.1%). The mobile sector contributed 14.9% in metropolitan areas versus 12.2% in the rest of Greece. The predominant mobile source was 900 MHz in both cases (4.5% in metropolitan areas vs. 3.3% in the rest of Greece). The total exposure from all RF sources complied with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 safety guidelines [ICNIRP, 2020]. The maximum exposure level was 0.129% of the limit for the metropolitan areas vs. 0.110% for the rest of Greece. Nonremarkable differences between metropolitan areas' exposure and the rest of Greece. In most cases, new 5 G antennas will be added to the existing base stations. Thus, the total exposure may be increased, leading to higher safety distances. © 2023 Bioelectromagnetics Society.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
希腊的射频暴露水平
医学物理系(色萨利大学医学院)参加了希腊国家电磁场研究方案(EDBM34),其范围是测量和评估敏感土地使用地区的射频(27-3000兆赫)暴露。在两个“大都市”(雅典和塞萨洛尼基:624点)和其他几个城市/农村地区(376点)进行了1000次测量。使用Narda Safety Test Solutions公司生产的SRM 3006频谱分析仪。大都市地区的宽带平均电场为0.41 V/m,而希腊其他地区为0.36 V/m。在大城市地区,主要的射频源是电视和广播调频信号(平均占总射频暴露水平的36.2%)。其余地区的主要来源为气象和军事/防御服务系统(31.1%)。在希腊的大都市地区,移动部门占14.9%,而希腊其他地区占12.2%。在这两种情况下,主要的移动源都是900 MHz(在大都市地区为4.5%,在希腊其他地区为3.3%)。所有射频源的总暴露量符合国际非电离辐射防护委员会(ICNIRP) 2020年安全指南[ICNIRP, 2020]。大都市地区的最大暴露水平为限值的0.129%,而希腊其他地区为0.110%。大都市地区与希腊其他地区的风险敞口差异不大。在大多数情况下,新的5g天线将被添加到现有的基站。因此,总暴露量可能会增加,从而导致更高的安全距离。©2023生物电磁学学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
The effect of mobile phone electromagnetic fields on the human resting state wake EEG and event-related potential: A systematic review and meta-analysis. Issue Information Numerical and analytical inspection of magnetic field effects in the radical pair mechanism by a simplified rate equation model Action potential threshold variability for different electrostimulation models and its potential impact on occupational exposure limit values. Characterising core body temperature response of free-moving C57BL/6 mice to 1.95 GHz whole-body radiofrequency-electromagnetic fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1