{"title":"Data-driven Q-matrix learning based on Boolean matrix factorization in cognitive diagnostic assessment","authors":"Jianhua Xiong, Zhaosheng Luo, Guanzhong Luo, Xiaofeng Yu","doi":"10.1111/bmsp.12271","DOIUrl":null,"url":null,"abstract":"<p>Attributes and the Q-matrix are the central components for cognitive diagnostic assessment, and are usually defined by domain experts. However, it is challenging and time consuming for experts to specify the attributes and Q-matrix manually. Thus, there is an urgent need for an automatic and intelligent means to address this concern. This paper presents a new data-driven approach for learning the Q-matrix from response data. By constructing a statistical index and a heuristic algorithm based on Boolean matrix factorization, the response matrix is decomposed into the Boolean product of the Q-matrix and the attribute mastery patterns. The feasibility of the proposed approach is evaluated using simulated data generated under various conditions. A real data example is also presented to demonstrate the usefulness of the proposed approach.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 3","pages":"638-667"},"PeriodicalIF":1.5000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12271","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Attributes and the Q-matrix are the central components for cognitive diagnostic assessment, and are usually defined by domain experts. However, it is challenging and time consuming for experts to specify the attributes and Q-matrix manually. Thus, there is an urgent need for an automatic and intelligent means to address this concern. This paper presents a new data-driven approach for learning the Q-matrix from response data. By constructing a statistical index and a heuristic algorithm based on Boolean matrix factorization, the response matrix is decomposed into the Boolean product of the Q-matrix and the attribute mastery patterns. The feasibility of the proposed approach is evaluated using simulated data generated under various conditions. A real data example is also presented to demonstrate the usefulness of the proposed approach.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.