Lei Fan , Huan Chen , Yong Liu , Hongwei Hou , Qingyuan Hu
{"title":"ERK signaling is required for nicotine-induced conditional place preference by regulating neuroplasticity genes expression in male mice","authors":"Lei Fan , Huan Chen , Yong Liu , Hongwei Hou , Qingyuan Hu","doi":"10.1016/j.pbb.2022.173510","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Nicotine is an addictive compound that interacts with nicotinic acetylcholine receptors<span> (nAChRs) in the ventral tegmental area<span> (VTA), inducing a release of dopamine in the nucleus accumbens (NAc). When neurons undergo repeated exposure to nicotine, several adaptive changes in </span></span></span>neuroplasticity<span> occur. Activation of nAChRs involves numerous intracellular signaling<span> cascades that likely contribute to neuroplasticity and ultimately the establishment of nicotine addiction. Nevertheless, the molecular mechanisms underlying this adaptation remain unclear. To explore the effects of nicotine on neuroplasticity, a stable nicotine-induced conditioned place preference (CPP) model was constructed by intravenous injection in mice. Using a PCR array, we observed significant changes in the expression of synaptic plasticity-related genes in the VTA (16 mRNAs) and NAc (40 mRNAs). When mice were pre-treated with </span></span></span>PD98059<span><span>, an extracellular signal-regulated kinase (ERK) inhibitor, more gene expression changes in the VTA (53 mRNAs) and NAc (60 mRNAs) were found. Moreover, PD98059 pre-treatment blocked the increased p-ERK/ERK and p-CREB/CREB ratios and decreased the expression of synaptic plasticity-related proteins such as SAP102, PSD95, synaptophysin<span><span>, and BDNF, these changes might contribute to preventing the establishment of nicotine-induced CPP. Furthermore, neurons from the VTA and NAc of nicotine CPP mice had an increased </span>dendritic spine density and complexity of dendritic morphology by Golgi </span></span>staining<span>. PD98059 also blocked this dynamic. These results demonstrate that repeated exposure to nicotine may remold the expression of neuroplasticity-related genes by activating the ERK signaling pathway in the VTA and NAc, and is related to the establishment of nicotine-induced CPP.</span></span></p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"222 ","pages":"Article 173510"},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305722001897","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Nicotine is an addictive compound that interacts with nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA), inducing a release of dopamine in the nucleus accumbens (NAc). When neurons undergo repeated exposure to nicotine, several adaptive changes in neuroplasticity occur. Activation of nAChRs involves numerous intracellular signaling cascades that likely contribute to neuroplasticity and ultimately the establishment of nicotine addiction. Nevertheless, the molecular mechanisms underlying this adaptation remain unclear. To explore the effects of nicotine on neuroplasticity, a stable nicotine-induced conditioned place preference (CPP) model was constructed by intravenous injection in mice. Using a PCR array, we observed significant changes in the expression of synaptic plasticity-related genes in the VTA (16 mRNAs) and NAc (40 mRNAs). When mice were pre-treated with PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, more gene expression changes in the VTA (53 mRNAs) and NAc (60 mRNAs) were found. Moreover, PD98059 pre-treatment blocked the increased p-ERK/ERK and p-CREB/CREB ratios and decreased the expression of synaptic plasticity-related proteins such as SAP102, PSD95, synaptophysin, and BDNF, these changes might contribute to preventing the establishment of nicotine-induced CPP. Furthermore, neurons from the VTA and NAc of nicotine CPP mice had an increased dendritic spine density and complexity of dendritic morphology by Golgi staining. PD98059 also blocked this dynamic. These results demonstrate that repeated exposure to nicotine may remold the expression of neuroplasticity-related genes by activating the ERK signaling pathway in the VTA and NAc, and is related to the establishment of nicotine-induced CPP.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.