Liang Liang, Jue Hou, Hajime Uno, Kelly Cho, Yanyuan Ma, Tianxi Cai
{"title":"Semi-supervised approach to event time annotation using longitudinal electronic health records.","authors":"Liang Liang, Jue Hou, Hajime Uno, Kelly Cho, Yanyuan Ma, Tianxi Cai","doi":"10.1007/s10985-022-09557-5","DOIUrl":null,"url":null,"abstract":"<p><p>Large clinical datasets derived from insurance claims and electronic health record (EHR) systems are valuable sources for precision medicine research. These datasets can be used to develop models for personalized prediction of risk or treatment response. Efficiently deriving prediction models using real world data, however, faces practical and methodological challenges. Precise information on important clinical outcomes such as time to cancer progression are not readily available in these databases. The true clinical event times typically cannot be approximated well based on simple extracts of billing or procedure codes. Whereas, annotating event times manually is time and resource prohibitive. In this paper, we propose a two-step semi-supervised multi-modal automated time annotation (MATA) method leveraging multi-dimensional longitudinal EHR encounter records. In step I, we employ a functional principal component analysis approach to estimate the underlying intensity functions based on observed point processes from the unlabeled patients. In step II, we fit a penalized proportional odds model to the event time outcomes with features derived in step I in the labeled data where the non-parametric baseline function is approximated using B-splines. Under regularity conditions, the resulting estimator of the feature effect vector is shown as root-n consistent. We demonstrate the superiority of our approach relative to existing approaches through simulations and a real data example on annotating lung cancer recurrence in an EHR cohort of lung cancer patients from Veteran Health Administration.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044535/pdf/nihms-1879201.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09557-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Large clinical datasets derived from insurance claims and electronic health record (EHR) systems are valuable sources for precision medicine research. These datasets can be used to develop models for personalized prediction of risk or treatment response. Efficiently deriving prediction models using real world data, however, faces practical and methodological challenges. Precise information on important clinical outcomes such as time to cancer progression are not readily available in these databases. The true clinical event times typically cannot be approximated well based on simple extracts of billing or procedure codes. Whereas, annotating event times manually is time and resource prohibitive. In this paper, we propose a two-step semi-supervised multi-modal automated time annotation (MATA) method leveraging multi-dimensional longitudinal EHR encounter records. In step I, we employ a functional principal component analysis approach to estimate the underlying intensity functions based on observed point processes from the unlabeled patients. In step II, we fit a penalized proportional odds model to the event time outcomes with features derived in step I in the labeled data where the non-parametric baseline function is approximated using B-splines. Under regularity conditions, the resulting estimator of the feature effect vector is shown as root-n consistent. We demonstrate the superiority of our approach relative to existing approaches through simulations and a real data example on annotating lung cancer recurrence in an EHR cohort of lung cancer patients from Veteran Health Administration.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.