Lukas Theisgen, Florian Strauch, Matías de la Fuente Klein, Klaus Radermacher
{"title":"Safe design of surgical robots - a systematic approach to comprehensive hazard identification.","authors":"Lukas Theisgen, Florian Strauch, Matías de la Fuente Klein, Klaus Radermacher","doi":"10.1515/bmt-2022-0202","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Since the 1980s, robotic arms have been transferred from industrial applications to orthopaedic surgical robotics. Adverse events are frequent and often associated with the adopted powerful and oversized anthropomorphic arms. The FDA's 510(k) pathway encourages building on such systems, leading to the adoption of hazards, which is known as \"predicate creep\". Additionally, the methodology of hazard identification for medical device development needs improvement.</p><p><strong>Methods: </strong>We present an approach to enhance general hazard identification and prevent hazards of predicate creep by using the integrative, scenario-based and multi-perspective Point-of-View (PoV) approach. We also present the Catalogue of Hazards (CoH) as an approach for collecting and systematising hazards for future risk analysis and robot development.</p><p><strong>Results: </strong>We applied seven predefined PoVs to the use case of robotic laminectomy and identified 133 hazards, mainly coming from HMI analysis and literature. By analysing the MAUDE and recalls databases of the FDA, we were able to classify historical hazards and adopt them into the use case.</p><p><strong>Conclusions: </strong>The combination of PoV approach and CoH is suitable for integrating multiple established hazard identification methods, increasing comprehensiveness, and supporting the systematic and hazard-based development of surgical robots.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"68 2","pages":"117-123"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives: Since the 1980s, robotic arms have been transferred from industrial applications to orthopaedic surgical robotics. Adverse events are frequent and often associated with the adopted powerful and oversized anthropomorphic arms. The FDA's 510(k) pathway encourages building on such systems, leading to the adoption of hazards, which is known as "predicate creep". Additionally, the methodology of hazard identification for medical device development needs improvement.
Methods: We present an approach to enhance general hazard identification and prevent hazards of predicate creep by using the integrative, scenario-based and multi-perspective Point-of-View (PoV) approach. We also present the Catalogue of Hazards (CoH) as an approach for collecting and systematising hazards for future risk analysis and robot development.
Results: We applied seven predefined PoVs to the use case of robotic laminectomy and identified 133 hazards, mainly coming from HMI analysis and literature. By analysing the MAUDE and recalls databases of the FDA, we were able to classify historical hazards and adopt them into the use case.
Conclusions: The combination of PoV approach and CoH is suitable for integrating multiple established hazard identification methods, increasing comprehensiveness, and supporting the systematic and hazard-based development of surgical robots.
期刊介绍:
Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.