Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre
{"title":"Experimental EMFI detection on a RISC-V core using the Trace Verifier solution","authors":"Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre","doi":"10.1016/j.micpro.2023.104968","DOIUrl":null,"url":null,"abstract":"<div><p>Physical attacks are powerful threats that can cause changes in the execution behavior of a program. Control-Flow Integrity (CFI) is used to check the program’s flow execution, ensuring that it remains unaltered by these attacks. The RISC-V Trace Encoder (TE) provides valuable information about the user program’s execution path, and is used as part of a CFI solution. An enhanced version of the TE specifications permits detecting intricate fault models such as the corruption of any discontinuity instruction, using an additional Trace Verifier (TV) hardware module. In this paper, we present a buffer overflow software attack simulation and experimental ElectroMagnetic Fault Injection (EMFI) attacks conducted on an Field Programmable Gate Array (FPGA) board that implements a RISC-V core linked to the enhanced TE and TV modules. Unlike existing CFI solutions, our proposed approach does not require modifications to the RISC-V compiler, user application code or the RISC-V core. The average overhead of our solution in terms of hardware area, memory and power consumption are equal to 13.6%, 3.5% and 9% respectively.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933123002120","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Physical attacks are powerful threats that can cause changes in the execution behavior of a program. Control-Flow Integrity (CFI) is used to check the program’s flow execution, ensuring that it remains unaltered by these attacks. The RISC-V Trace Encoder (TE) provides valuable information about the user program’s execution path, and is used as part of a CFI solution. An enhanced version of the TE specifications permits detecting intricate fault models such as the corruption of any discontinuity instruction, using an additional Trace Verifier (TV) hardware module. In this paper, we present a buffer overflow software attack simulation and experimental ElectroMagnetic Fault Injection (EMFI) attacks conducted on an Field Programmable Gate Array (FPGA) board that implements a RISC-V core linked to the enhanced TE and TV modules. Unlike existing CFI solutions, our proposed approach does not require modifications to the RISC-V compiler, user application code or the RISC-V core. The average overhead of our solution in terms of hardware area, memory and power consumption are equal to 13.6%, 3.5% and 9% respectively.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.