Flexible two-piece distributions for right censored survival data.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2023-01-01 DOI:10.1007/s10985-022-09574-4
Worku B Ewnetu, Irène Gijbels, Anneleen Verhasselt
{"title":"Flexible two-piece distributions for right censored survival data.","authors":"Worku B Ewnetu,&nbsp;Irène Gijbels,&nbsp;Anneleen Verhasselt","doi":"10.1007/s10985-022-09574-4","DOIUrl":null,"url":null,"abstract":"<p><p>An important complexity in censored data is that only partial information on the variables of interest is observed. In recent years, a large family of asymmetric distributions and maximum likelihood estimation for the parameters in that family has been studied, in the complete data case. In this paper, we exploit the appealing family of quantile-based asymmetric distributions to obtain flexible distributions for modelling right censored survival data. The flexible distributions can be generated using a variety of symmetric distributions and monotonic link functions. The interesting feature of this family is that the location parameter coincides with an index-parameter quantile of the distribution. This family is also suitable to characterize different shapes of the hazard function (constant, increasing, decreasing, bathtub and upside-down bathtub or unimodal shapes). Statistical inference is done for the whole family of distributions. The parameter estimation is carried out by optimizing a non-differentiable likelihood function. The asymptotic properties of the estimators are established. The finite-sample performance of the proposed method and the impact of censorship are investigated via simulations. Finally, the methodology is illustrated on two real data examples (times to weaning in breast-fed data and German Breast Cancer data).</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"29 1","pages":"34-65"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09574-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

An important complexity in censored data is that only partial information on the variables of interest is observed. In recent years, a large family of asymmetric distributions and maximum likelihood estimation for the parameters in that family has been studied, in the complete data case. In this paper, we exploit the appealing family of quantile-based asymmetric distributions to obtain flexible distributions for modelling right censored survival data. The flexible distributions can be generated using a variety of symmetric distributions and monotonic link functions. The interesting feature of this family is that the location parameter coincides with an index-parameter quantile of the distribution. This family is also suitable to characterize different shapes of the hazard function (constant, increasing, decreasing, bathtub and upside-down bathtub or unimodal shapes). Statistical inference is done for the whole family of distributions. The parameter estimation is carried out by optimizing a non-differentiable likelihood function. The asymptotic properties of the estimators are established. The finite-sample performance of the proposed method and the impact of censorship are investigated via simulations. Finally, the methodology is illustrated on two real data examples (times to weaning in breast-fed data and German Breast Cancer data).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
右截尾生存数据的灵活的两件式分布。
删减数据的一个重要的复杂性是只观察到感兴趣的变量的部分信息。近年来,研究了一大类非对称分布及其在完整数据情况下参数的极大似然估计。在本文中,我们利用基于分位数的非对称分布来获得灵活的分布来建模右截尾生存数据。柔性分布可以由各种对称分布和单调连接函数生成。这个族的有趣特征是,位置参数与分布的索引参数分位数一致。该族也适用于描述不同形状的危害函数(常数、递增、递减、浴缸和倒立浴缸或单峰形状)。统计推断是对整个分布族进行的。参数估计是通过优化不可微似然函数来实现的。建立了估计量的渐近性质。通过仿真研究了该方法的有限样本性能和审查的影响。最后,用两个真实的数据例子说明了该方法(母乳喂养的断奶时间数据和德国乳腺癌数据)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Optimal survival analyses with prevalent and incident patients. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1