{"title":"Pareto front approximation through a multi-objective augmented Lagrangian method","authors":"Guido Cocchi , Matteo Lapucci , Pierluigi Mansueto","doi":"10.1016/j.ejco.2021.100008","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, we consider smooth multi-objective optimization problems with convex constraints. We propose an extension of a multi-objective augmented Lagrangian Method from recent literature. The new algorithm is specifically designed to handle sets of points and produce good approximations of the whole Pareto front, as opposed to the original one which converges to a single solution. We prove properties of global convergence to Pareto stationarity for the sequences of points generated by our procedure. We then compare the performance of the proposed method with those of the main state-of-the-art algorithms available for the considered class of problems. The results of our experiments show the effectiveness and general superiority w.r.t. competitors of our proposed approach.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"9 ","pages":"Article 100008"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejco.2021.100008","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 7
Abstract
In this manuscript, we consider smooth multi-objective optimization problems with convex constraints. We propose an extension of a multi-objective augmented Lagrangian Method from recent literature. The new algorithm is specifically designed to handle sets of points and produce good approximations of the whole Pareto front, as opposed to the original one which converges to a single solution. We prove properties of global convergence to Pareto stationarity for the sequences of points generated by our procedure. We then compare the performance of the proposed method with those of the main state-of-the-art algorithms available for the considered class of problems. The results of our experiments show the effectiveness and general superiority w.r.t. competitors of our proposed approach.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.