Elpidio Attoh-Mensah, Ivan Igor-Gaez, Lydie Vincent, Nicolas Bessot, Clément Nathou, Olivier Etard
{"title":"Cardiorespiratory changes associated with micro-arousals during naps","authors":"Elpidio Attoh-Mensah, Ivan Igor-Gaez, Lydie Vincent, Nicolas Bessot, Clément Nathou, Olivier Etard","doi":"10.1016/j.nbscr.2023.100093","DOIUrl":null,"url":null,"abstract":"<div><p>The autonomic nervous system (ANS) and the central nervous system (CNS) interplay during sleep, particularly during phasic events such as micro-arousals, has been the subject of several studies. The underlying mechanisms of such relationship which remain unclear, specifically during daytime sleep, were partly investigated in this study. Napping polysomnography was performed on two occasions at least one week apart in 15 healthy subjects. The following cardiorespiratory variables were extracted from the recordings: tachogram, pulse transit time (PTT), pulse wave amplitude, respiratory cycle amplitude, and frequency. Two experts first detected micro-arousal events, then, cardiorespiratory variables were averaged by 30-s epochs over 2 min centered on the onset of the micro-arousals. We found that in the 30 s preceding the arousal events as detected on the electroencephalogram (EEG) recordings, there was a decrease in tachogram, pulse wave amplitude, and PTT values while the respiratory amplitude increased. These changes were more prominent in stage N2 and N3 sleep than in stage N1. The present findings provide new insights into the autonomic changes during the pre-arousal period in daytime naps, as all the variables investigated suggest a sympathetic physiological origin for the changes.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"14 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/af/main.PMC10038786.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994423000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
The autonomic nervous system (ANS) and the central nervous system (CNS) interplay during sleep, particularly during phasic events such as micro-arousals, has been the subject of several studies. The underlying mechanisms of such relationship which remain unclear, specifically during daytime sleep, were partly investigated in this study. Napping polysomnography was performed on two occasions at least one week apart in 15 healthy subjects. The following cardiorespiratory variables were extracted from the recordings: tachogram, pulse transit time (PTT), pulse wave amplitude, respiratory cycle amplitude, and frequency. Two experts first detected micro-arousal events, then, cardiorespiratory variables were averaged by 30-s epochs over 2 min centered on the onset of the micro-arousals. We found that in the 30 s preceding the arousal events as detected on the electroencephalogram (EEG) recordings, there was a decrease in tachogram, pulse wave amplitude, and PTT values while the respiratory amplitude increased. These changes were more prominent in stage N2 and N3 sleep than in stage N1. The present findings provide new insights into the autonomic changes during the pre-arousal period in daytime naps, as all the variables investigated suggest a sympathetic physiological origin for the changes.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.