Hui Chen, Sahar Souizi, Kaylyn Stewart, Lee Blaney
{"title":"Application of the Rd/w framework to assess Donnan dialysis performance","authors":"Hui Chen, Sahar Souizi, Kaylyn Stewart, Lee Blaney","doi":"10.1016/j.coche.2023.100967","DOIUrl":null,"url":null,"abstract":"<div><p>Donnan dialysis exploits electrochemical potential gradients across ion-exchange membranes to separate ions between feed and draw solutions. This technique has been applied for treatment and recovery of chemicals in water and wastewater. Previous studies have arbitrarily selected the draw solution chemistry, making it difficult to fairly compare experimental outcomes. A universal framework is needed to standardize design and interpretation of Donnan dialysis systems. We calculated the R<sub>d/w</sub> parameter, which is related to the draw ion concentrations in the feed and draw solutions at Donnan equilibrium, for previous studies. R<sub>d/w</sub> values were used to determine theoretical recoveries and compare them to experimental outcomes. Of the literature data, 57% matched the theoretical recovery, 37% underperformed due to operating time constraints or transport limitations, and 6% outperformed Donnan equilibrium due to use of integrated processes. Ultimately, this work highlights the benefits of the R<sub>d/w</sub> framework for standardizing interpretation of Donnan dialysis systems.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"42 ","pages":"Article 100967"},"PeriodicalIF":8.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000710","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Donnan dialysis exploits electrochemical potential gradients across ion-exchange membranes to separate ions between feed and draw solutions. This technique has been applied for treatment and recovery of chemicals in water and wastewater. Previous studies have arbitrarily selected the draw solution chemistry, making it difficult to fairly compare experimental outcomes. A universal framework is needed to standardize design and interpretation of Donnan dialysis systems. We calculated the Rd/w parameter, which is related to the draw ion concentrations in the feed and draw solutions at Donnan equilibrium, for previous studies. Rd/w values were used to determine theoretical recoveries and compare them to experimental outcomes. Of the literature data, 57% matched the theoretical recovery, 37% underperformed due to operating time constraints or transport limitations, and 6% outperformed Donnan equilibrium due to use of integrated processes. Ultimately, this work highlights the benefits of the Rd/w framework for standardizing interpretation of Donnan dialysis systems.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.