Large factor model estimation by nuclear norm plus ℓ1 norm penalization

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-10-19 DOI:10.1016/j.jmva.2023.105244
Matteo Farnè, Angela Montanari
{"title":"Large factor model estimation by nuclear norm plus ℓ1 norm penalization","authors":"Matteo Farnè,&nbsp;Angela Montanari","doi":"10.1016/j.jmva.2023.105244","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a comprehensive estimation framework via nuclear norm plus <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> norm penalization for high-dimensional approximate factor models with a sparse residual covariance. The underlying assumptions allow for non-pervasive latent eigenvalues and a prominent residual covariance pattern. In that context, existing approaches based on principal components may lead to misestimate the latent rank. On the contrary, the proposed optimization strategy recovers with high probability both the covariance matrix components and the latent rank and the residual sparsity pattern. Conditioning on the recovered low rank and sparse matrix varieties, we derive the finite sample covariance matrix estimators with the tightest error bound in minimax sense and we prove that the ensuing estimators of factor loadings and scores via Bartlett’s and Thomson’s methods have the same property. The asymptotic rates for those estimators of factor loadings and scores are also provided.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"199 ","pages":"Article 105244"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X23000908/pdfft?md5=728de694d0d649b95d2f5a00e75117a5&pid=1-s2.0-S0047259X23000908-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000908","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a comprehensive estimation framework via nuclear norm plus 1 norm penalization for high-dimensional approximate factor models with a sparse residual covariance. The underlying assumptions allow for non-pervasive latent eigenvalues and a prominent residual covariance pattern. In that context, existing approaches based on principal components may lead to misestimate the latent rank. On the contrary, the proposed optimization strategy recovers with high probability both the covariance matrix components and the latent rank and the residual sparsity pattern. Conditioning on the recovered low rank and sparse matrix varieties, we derive the finite sample covariance matrix estimators with the tightest error bound in minimax sense and we prove that the ensuing estimators of factor loadings and scores via Bartlett’s and Thomson’s methods have the same property. The asymptotic rates for those estimators of factor loadings and scores are also provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核范数加1范数惩罚的大因子模型估计
针对残差稀疏的高维近似因子模型,提出了一种核范数加1范数惩罚的综合估计框架。基本假设允许非普遍的潜在特征值和突出的残差协方差模式。在这种情况下,现有的基于主成分的方法可能导致对潜在秩的错误估计。相反,所提出的优化策略可以高概率地恢复协方差矩阵分量以及潜在秩和残差稀疏度模式。在恢复的低秩和稀疏矩阵变异的条件下,我们导出了误差界在极小极大意义上最紧的有限样本协方差矩阵估计量,并证明了随后的因子负荷和分数的Bartlett和Thomson方法估计量具有相同的性质。对这些因子负荷和分数的估计也给出了渐近率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1